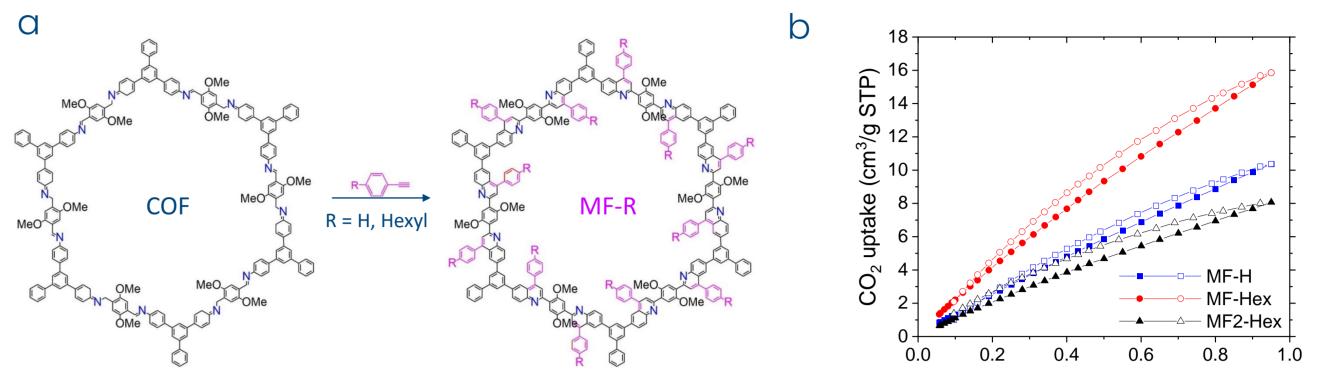
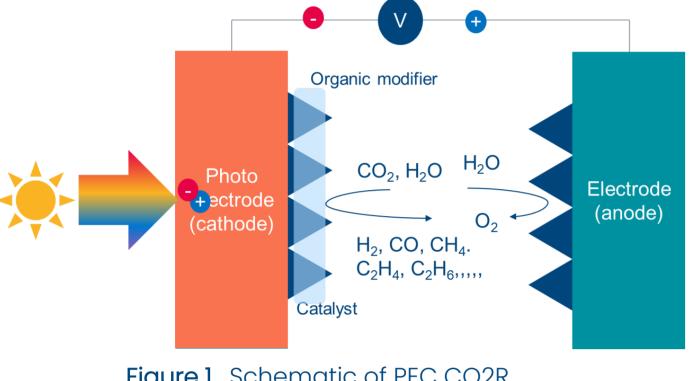
Photoelectrochemical Carbon Dioxide Reduction Using a Perovskite Photoelectrode with an Organic Modifier


Sehun Seo¹, Sizhou Yang², Ayush Agrawal³, Qiang Zhang¹, Haiyan Mao⁴, Hojoong Choi¹, Tim Kodalle², Woong Choi⁵, Keo n-Han Kim⁵, Adman Webber⁵, Alexis T. Bell⁵, Carolin M. Sutter-Fella², Jeffrey A. Reimer⁴, Matthias Heuchel¹, Aditya Mohi te³, Yi Liu², Francesca M. Toma^{1*}

- ¹ Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Teltow, Germany
- ² Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- ³ Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- ⁴ Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA US
- ⁵ Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA, Universität


Introduction

Photoelectrochemical (PEC) carbon dioxide reduction (CO2R), the direct conversion of CO₂ into energy-dense multi-carbon-based hydrocarbons (C2+) using sunlight, represents a promising avenue towards achieving a carbon-neutral society. However, the production of C2+ via PEC CO2R presents considerable challenges due to (1) the limited photophysical performance of photoelectrodes and (2) the high overpotential with low selectivity for C2+ production. Therefore, the rational design of photoelectrodes with catalysts is essential, considering the compatibility between suitable active materials and catalytic factors such as the microenvironment and internal catalytic characteristics.

Catalytic performance of MF

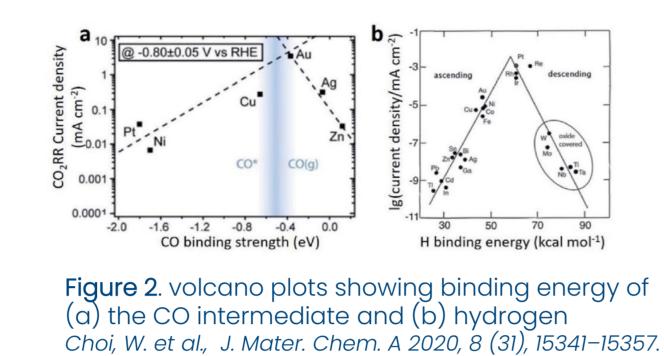
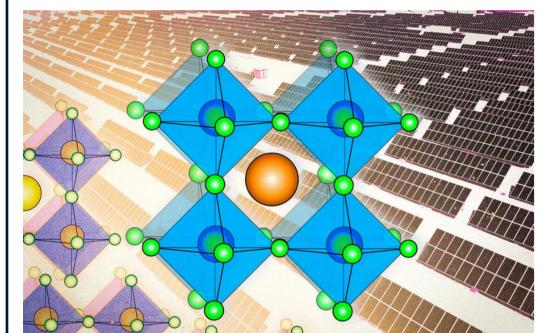



Figure 1. Schematic of PEC CO2R

- The PEC CO2R is the conversion of CO₂ to more reduced chemical species using solar energy. (Figure 1)
- Photoelectrode generates charges, hole and electron, by absorbing solar energy.

Organometal halide perovskites (OHPs) is Promising photoactive material for PEC CO2R due to its excellent properties.

- ✓ Direct and narrow bandgap (1.5 eV)
- Strong light absorption
- Weakly bound exciton
- ✓ Large diffusion length
- Low trap density
- Suitable band position for solar fuel generation
- Relative Pressure (P/P_0) СН EtOH PrOH efficiency (%) ⁻aradaic 43.9 43.6 41.0 42.0 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3 Potential (V_{RHE}) Microenvironment Local CO₂ Local pH Surface defect d engineering concentration control Nafion/Ox-Cu Ox-Cu MF-Nafion/Ox-Cu Cu catalyst $CH_4 \downarrow C_2H_4 \uparrow$ $H_2 \& C1 \downarrow C2^+ \uparrow$ $H_2 \& C1 \downarrow C2^+ \uparrow \uparrow$

Figure 4: (a) Schematic of MF. (b) CO2 uptake of MF. (c) Faradaic efficiency of CO2R for bare Cu, Ox-Cu, Nafion-Cu, MF-Cu. (d) Mechanism of the enhanced selectivity of CO2R due to catalyst and organic modifier

- We synthesized modified COF (MF) with different substituents to control the CO_2 capture characteristic. MF-HEX shows the best CO₂ uptake.
- MF-HEX shows the best C2+ selectivity of c.a. 70 % at -1.3 V_{RHF}. This improved selectivity was caused by the increased local CO_2 concentration due to CO_2

Drawback: Low stability in humid environment

- Catalyst determine product selectivity by control of reaction pathway depending on their internal characteristics.
 - Copper is the suitable catalyst to produce C2+ products due to its suitable binding energy for absorbed CO*, which is an important intermediate with low hydrogen production. (Figure 2)
 - Oxide-derived copper (Ox-Cu): Defective Cu surface enhances C-C coupling for ethylene production with suppression of Methane production
- Organic modifier controls the microenvironment of catalyst surface.
 - Covalent organic frameworks (COFs) are a class of material characterized by two- or three-dimensional (2D or 3D) porous crystalline structures that are connected by strong covalent bonds formed by reacting organic monomers with precise control enabling defined composition and porosity within the structures.
 - COFs is suitable and stable organic modifier to control the wettability, CO₂ capturing, pH etc on the catalyst surface due to its unique structure.
 - □ Nafion is usually used to bind between COF and Ox-Cu and to control of pH at catalyst surface as an organic modifier.

physisorption of MF on the catalyst surface.

PEC performance of MF/OHP photocathode

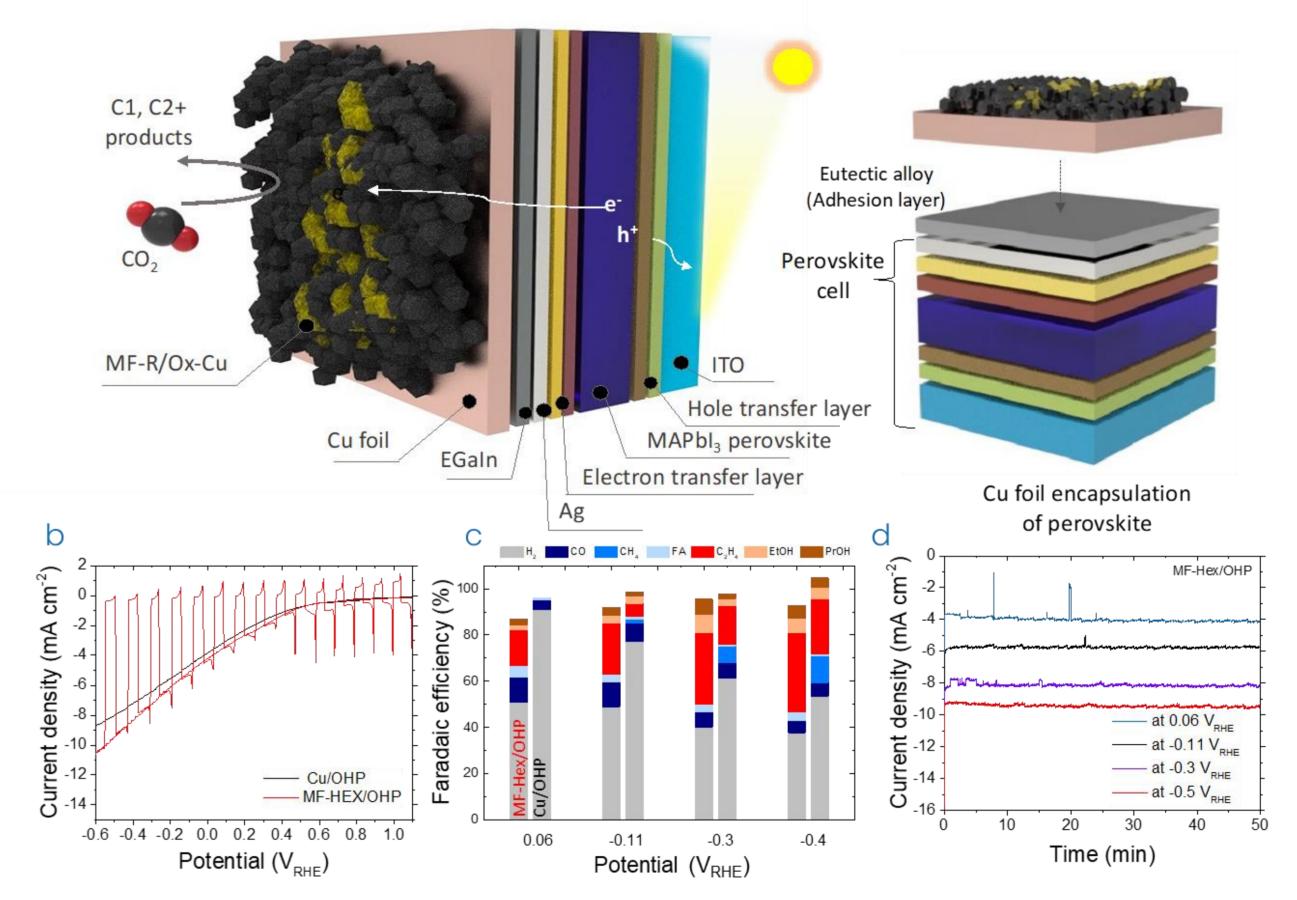


Figure 5 (a) Schematic of MF-decroated OHP photocathode. (b) LSV curves for Cu/OPP and MF/OHP. (c) Faradaic efficiency of CO2R for Cu/OPP and MF/OHP. (d) CA measurements of MF/OHP at different potential

Results

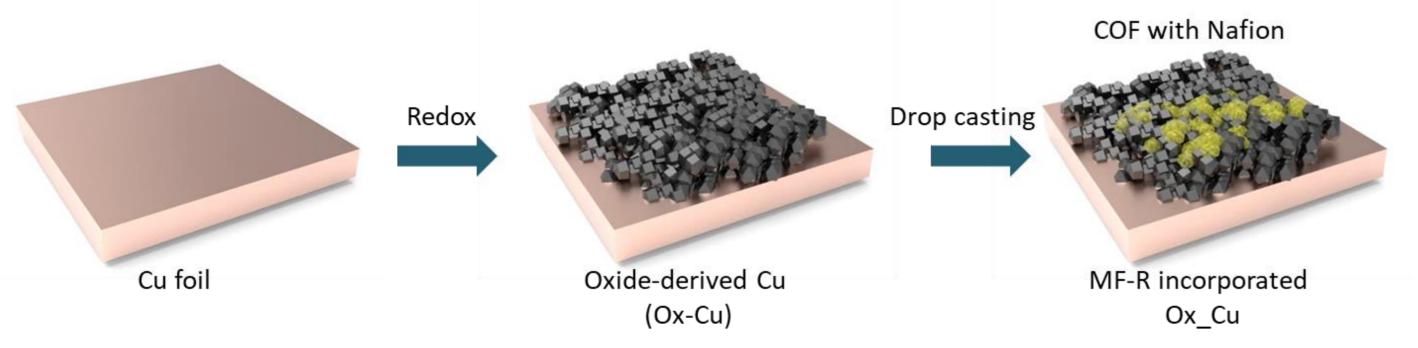


Figure 3. Schematic of procedule for catalyst preparation

We first synthesized Ox-Cu on Cu foil to enhance C-C coupling. The COF with Nafion was decorated on the Ox-Cu to improve the microenvironment on Ox-Cu surface

- MF-HEX was decorated on the OHP photocathode.
- Photocurrent density of MF/OHP is 10° mA/cm² at -0.4 V_{RHF}, -4 mA/cm² at 0.06 V_{RHF}
- MF/OHP photocathode exhibited a remarkable C2+ selectivity, with over 15% faradaic efficiency (FE) at 0.06 V_{RHF} and over 34% FE at -0.4 V_{RHE} under 1 sun AM 1.5G, as compared to bare-Cu/OHP photocathode.

Summary

- MF Catalyst improves local CO₂ concentration by CO₂ physisorption, which improves selectivity of C2+ production.
- High C2+ productivity at high potential in MF-HEX/OHP photocathode

Dr. Sehun Seo, Institute of Functional Materials for Sustainability

Helmholtz-Zentrum Hereon • Kantstr. 55 • 14513 Teltow I Germany • T + 49 3328 352 - 229 • Sehun.Seo@hereon.de • www.hereon.de