Photoelectrochemical Carbon Dioxide Reduction Using
a Perovskite Photoelectrode with an Organic Modifier
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Introduction Catalytic performance of MF

Photoelectrochemical (PEC) carbon dioxide reduction (CO2R), the direct conversion q .

of CO, into energy-dense multi-carbon-based hydrocarbons (C2+) using sunlight, ~ 16 o
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Catalyst Figure 2. volcano plots showing binding energy of Potential (Vgie) Microenvironment
(o% the CO intermediate and (b) hydrogen
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Figure 1. Schematic of PEC COZR d engineering control concentration
» The PEC COZ2R is the conversion of CO, to more reduced chemical species using - -
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- Photoelectrode generates charges, hole and electron, by absorbing solar energy. LW J & i T -]
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/Orgonometol halide perovskites (OHPs) is Promising photoactive material A

for PEC COZ2R due to its excellent properties.
sy & Direct and narrow bandgap (15 eV) CHsP=CaHa T
s 5 ‘ Figure 4: (a) Schematic of MF. (b) CO2 uptake of MF. (¢) Faradaic efficiency of CO2R for bare Cu, Ox-Cu,

Nafion-Cu, MF-Cu. (d) Mechanism of the enhanced selectivity of CO2R due to catalyst and organic modifier

Cu catalyst Ox-Cu Nafion/Ox-Cu MF-Nafion/0x-Cu

H, & C1) C2*1 H,&C1l C2*PM

£ Strong light absorption

I & Weakly bound exciton

‘ .+ We synthesized modified COF (MF) with different substituents to control the CO,
capture characteristic. MF-HEX shows the best CO, uptake.

« MF-HEX shows the best C2+ selectivity of c.a. 70 % at -1.3 Vg This improved
selectivity was caused by the increased local CO, concentration due to CO,
physisorption of MF on the catalyst surface.

% K& Large diffusion length
| & Low trap density

| & Suitable band position for solar fuel generation
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\Linfong Pan et al, Nat. C & Drawback: Low stability in humid environment

« Catalyst determine product selectivity by control of reaction pathway depending on

their internal characteristics.
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d Copper is the suitable catalyst to produce C2+ products due to its suitable

binding energy for absorbed CO*, which is an important intermediate with C1, C2+
low hydrogen production. (Figure 2) products

PEC performance of MF/OHP photocathode
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0 Oxide-derived copper (Ox-Cu): Defective Cu surface enhances C-C

coupling for ethylene production with suppression of Methane production
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Q Covalent organic frameworks (COFs) are a class of material l /'l\gE'eC“"““a”Sfer Lo Cu foil encapsulation
characterized by two- or three-dimensional (2D or 3D) porous crystalline o I e [ of perovskite
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a Nafion is usually used to bind between COF and Ox-Cu and to control of 0670402 00 02 04 06 08 10 006 o1 03 04 o2 v
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_ PH at catalyst surface as an organic modifier. Y
Figure 5 (a) Schematic of MF-decroated OHP photocathode. (b) LSV curves for Cu/OPP and MF/OHP. (c)
I Faradaic efficiency of CO2R for Cu/OPP and MF/OHP. (d) CA measurements of MF/OHP at different potential
SO—— « MF-HEX was decorated on the OHP photocathode.
Ll «  Photocurrent density of MF/OHP is 10 mA/cm?2 at -0.4 Ve, 4 mA/cm2 at 0.06 Vg
| +  MF/OHP photocathode exhibited a remarkable C2+ selectivity, with over 15%
prop casting faradaic efficiency (FE) at 0.06 Vg and over 34% FE at -0.4 Vg under 1sun AM
) 1.5G, as compared to bare-Cu/OHP photocathode.
Oxide-derived Cu MF-R incorporated SummCI ry
(Ox-Cu) Ox_Cu + MF Catalyst improves local CO, concentration by CO, physisorption, which
Figure 3. Schematic of procedule for catalyst preparation improves selectivity of C2+ pI’Od uction.
» High C2+ productivity at high potential in MF-HEX/OHP photocathode
We first synthesized Ox-Cu on Cu foil to enhance C-C coupling. The COF with ”
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