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Interfacial Properties of the FeTi HydrideFormation from First Principles

• From Westlake1 work, a purely geometrical model that reduces mismatches was derived
and used as initial guess for the metal-hydride orientation relationship

• Based on this, correspondent strained interfacial slab models are used to extract the
chemical contribution to the interfacial energy for the three orientations.
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• At first, the bulk crystal structures were relaxed to their equilibrium volume and had their
properties calculated for benchmarking the DFT settings:

• The DFT calculations reproduce reaction enthalpy, cell shape, bulk modulus and elastic
properties in good agreement with experimentally measured data.
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• By applying incremental tensile, compressive and shear strain in all directions, the
elastic properties of metal and hydride were calculated [GPa].
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• Stress-Free Transformation Strain &
Elastic properties convolution

• Favorable direction of formation
• Anisotropy in phase-field simulations

B(n) Calculation
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Summary
To understand metal-hydride phase transformations and their impact onhydrogenation kinetics, the interfacial properties between the ß-FeTiH hydride andits parent B2-FeTi matrix were analyzed by :

Findings:
• Insights into the interplay between chemical and elasticinterfacial energies
• Calculation of the habit plane of the ß-phase in the B2-FeTi matrix.
• Support micro-mechanics implementation into phase-fieldsimulations of FeTi alloy hydrogenation.

• Studying the interfaces between the hydride/metallic matrix
• Quantifying separately their chemical and elastic energy contributions
• Analyzing the strain and elastic tensor relationship
• Determining the habit plane of hydride formation
• Implementing the interfacial analysis into KKS phase-field model
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Cell-shape correlation
• Using the hydride phase as frame of reference, a tetragonal to orthorhombic transformation is
identified

• The Stress-Free Transformation Strain (SFTS) is derived based on the lattice mismatch
between the metal and the hydride.
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