Large-scale phase-field sintering simulations of solid state sintering of metallic powders

V. Ivannikov¹, P. Münch³, M. Kronbichler⁵, F. Thomsen⁴, C. Cyron², T. Ebel¹, R. Willumeit-Römer¹ ¹Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon

²Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon

³Institute of Mathematics, Augsburg University

⁴Flensburg University of Applied Sciences ⁵Faculty of Mathematics, Ruhr University Bochum

Goal

- 1. Find optimal sintering conditions which deliver parts with the highest densification and the desirable microstructure thus reducing the number of experiments and, therefore, the manufacturing costs.
- 2. Study how variation of different processing parameters (temperature, time, heating and cooling rates, etc.) influences the obtained densification and

Requirements to the modeling tools

Plausibility	 Both densification and microstructure evolution should be captured 				
Convenience	 The calibration of the model should be relatively simple and straightforward 				
Scalability	 The approach should be applicable to packings with large number of particles 				
	The simulations should run as fast as possible				

Computational models

Performance

on either a single PC or a cluster

wodei	main usage		PlauSidility		Convenience	Scalability	Performance
7 DoF	Extract material data from experiments	 shrinkage 	 neck growth 	× grain growth	Easy to calibrate	2 particles	High
DEM	Early stage sintering	 shrinkage 	 neck growth 	× grain growth	Easy to calibrate	> 10,000 particles	High

Later stage sintering

Large-scale phase-field simulations

shrinkage

In neck growth grain growth Difficult to calibrate < 10,000 particles</p>

Low

References:

Thomsen F., et al. (2018): An elementary simulation model for neck growth and shrinkage during solid phase sintering. Materialia 3:338-346. https://doi.org/10.1016/j.mtla.2018.08.031

Ivannikov V., et al. (2022): Coupling the discrete element method and solid state diffusion equations for modeling of metallic powders sintering. Computational Particle Mechanics. https://doi.org/10.1007/s40571-022-00486-6

Ivannikov V., et al. (2021): Capturing shrinkage and neck growth with phase field simulations of the solid state sintering. Modelling and Simulation in Materials Science and Engineering 29(7):075008. https://doi.org/10.1088/1361-651X/ac1f87 Munch P., et al. (2024): On the construction of an efficient finite-element solver for phase-field simulations of many-particle solid-state-sintering processes. Computational Materials Science 231:112589. https://doi.org/10.1016/j.commatsci.2023.112589

porosity

Evolution of the grain size distribution during sintering

Scaling of different and computationally most expensive parts of the solver

Helmholtz-Zentrum Hereon • Max-Planck-Straße 1 • 21502 Geesthacht I Germany • T +49 4152 87-0 • contact@hereon.de • www.hereon.de Contact: Dr. Vladimir Ivannikov • T +49 4152 87-1910 • vladimir.ivannikov@hereon.de