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Abstract
Human beings averagely spend more than 90% of time in indoor environments. Indoor 
anthropogenic emissions cause serious metallic corrosion and lead to huge economic 
cost. However, the mechanism of indoor metallic corrosion has not been well 
understood, which is largely due to the lack of high time-resolution monitoring 
instruments and advanced data processing tools. To tackle this challenge, we 
employed atmospheric corrosion monitoring (ACM) sensors, portable indoor air quality 
monitoring systems, and machine learning techniques to study the corrosion of steel 
and zinc in a student canteen in The Hong Kong Polytechnic University. The ACM sensors 
allow us to track the galvanic corrosion process between silver and steel or zinc at 
second time-resolution. Portable instruments enable us to obtain the real-time 
concentrations of temperature, relative humidity, fine particulate matter, and carbon 
dioxide. Random forest model was used to estimate the impacts of local environmental 
conditions on corrosion rate. We found the corrosion current above average heavily 
relied on surface contamination by cleaning- or cooking-generated droplets, whereas 
the corrosion current below average is mainly driven by atmospheric corrosion.
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Fig. 1. Research site: student canteen in The Hong Kong 

Polytechnic University. Environmental characteristics of 

this area: high temperature, high humidity, and 

frequent cooking and cleaning activities.

Fig. 2. Image of metallic corrosion: sunbstantial

amounts of rust formed on the surface of metallic

cooking cabinet in the target kitchen (Fig. 1) .

Random forest (RF)Q-Trak DUSTTRAK II

Fig. 3. Research tools used in this study. ACM sensor is used for testing corrosion current.1 Q-Trak is used for testing the concentration of CO2. DUSTTRAK II is used for testing the concentration of PM2.5. RF model is used for data processing and analysis.
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Fig. 4. Images of ACM sensors during the

corrosion process. Left column: Steel/Ag 

sensor. Right column:  Zinc/Ag sensor.

Fig. 6. RF-based fitting results for the training (red points) or testing 

(blue points) samples of steel (a-c) or zinc (b-f). (a, d) All data. (b, 

e) Results for corrosion current above the average of all data. (c-f) 

Results for corrosion current  below the average of all data. 

Fig. 7. Importance index of environmental 

factors to corrosion current below average.

(a) Steel/Ag sensor. (b) Zinc/Ag sensor. 

Fig. 5. Corrosion current (a-b) and environmental factors (c-

f) measured at the research site. (a) Steel/Ag sensor. (b) 

Zinc/Ag sensor. (c) Relative humidity (RH). (d) Temperature (T). 

(e) Carbon dioxide. (f) Fine particulate matter.

We found that cooking and cleaning activities induced deposition of liquid droplets on ACM sensor surface, which accelerated corrosion (Fig. 4). The corrosion current 
peaks exhibit substantial overlapping with the environmental factors (Fig. 5), reflecting the strong effects of atmospheric corrosion. RF-based modeling indicates that 
separation of corrosion current to above average and below average can significantly improve the model performance towards all the data (Fig. 6). The corrosion current 
above the average corresponds to the deposition of cleaning- or cooking-generated droplets (Figs. 4 and 5). The corrosion current below average can be described by 
local environmental conditions (RH, T, CO2, and PM2.5), reflecting the plausible driven effect of atmospheric corrosion (Fig. 6c and 6f).2 RF-based importance index analysis 
indicates that RH, T, CO2, and PM2.5 exhibit decreasing impacts to the corrosion of steel and zinc in the targeted canteen environment (Fig. 7).3 RH exhibits a stronger role to 
the steel corrosion than to zinc corrosion, reflecting their different corrosion process as well as a plausible more hygroscopic surface of Steel/Ag sensor or the deposited 
contaminants.
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