

Simulating the recrystallization kinetics of ultrafine grained aluminum using a multiphase field model, and the evolution of the structure and properties

Olena Abramova^a, Dayan Nugmanov^a, Andraes Prahs^b, Daniel Schneider^{b,c}, Julia Ivanisenko^a, Brigitte Baretzky^a, Britta Nestler^{b,c}

^aInstitute of Nanotechnology (INT); ^bInstitute of Applied Materials (IAM-MMS); ^cInstitute for Digital Materials Science (IDM), HKA; Karlsruhe, Germany

Introduction

Schematic representation of the change in grain size distribution (After Detert 1978).

Introduction. ReX kinetics after conventional deformation and SPD-processed material.

- Additional hardening and strengthening after short-time annealing in pure AI
- Low angle boundaries (2°<Θ<15°) are characterized higher thermal stability than high angle boundaries (Θ>15°)

Experimental part. High pressure torsion extrusion In cooper. with J. Ivanisenko group, INT

- Material: HPTE- processed pure Al
- HPTE regime: v1w1 at RT
- v- translation velocity, v = 1 mm/min
- ω rotation velocity, ω =1 rot/min
- Static recrystallization: isothermal, annealing at 300°C during 10, 30, 60 and 300 min. Quenching to water.
- Material characterization:
 SEM EBSD, X-ray diffraction, Microhardness
 - Controlling parameters
 - (Sub)grain size
 - Misorientation angles
 - Dislocation density

Experimentally obtained microstructure of pure AI

Distribution of D15 parameter with respect to the specific area $\mathbf{s}_{i}/\mathbf{S}$

Phase-field model simulation of the recrystallization kinetic in pure aluminum structure

Distribution of the stored energy is defined from GND density distribution and from GB curves

PFM simulation in PACE 2D. Oriented image maps and stored stored energy distribution during the ReX simulation

PFM simulation in PACE 2D. Distribution of D15 parameter with respect to the specific area s_i/S

Combination of the crystal plasticity with MPFM simulation to calculation of the stress-strain curves of the pure Al under the simple stress conditions

CRSS for <111>(111) slip system is defined:*,**

Karlsruhe Institute of Technology

Simulated true strain-true stress curves for compression in ED direction

Simul. frame	$ ho_{GND}$		$ \rho_{GND} + \rho_{SSD} $			HV .	YS _{exp} ~0.3HV _{exp} ,
	$ au_{01}$, MPa	YS_{simul_1},MPa	$ au_{02}$, MPa	YS _{simul_2} , MPa	State	MPa	МРа
initial	33,97	119,10	40,36	138,60	initial	477	143.1
F100	27,02	102,20	31,74	115,60	10 min	389	116.7
F200	11,69	63,08	18,79	72,10	30 min	353	105.6**
F500	8,73	42,96	8,73	42,96	60 min	270	81

- ReX process replicated by digital twin using PFM Multistage grain growth: nucleation and growth in UFG structure Normal and abnormal grain growth predicted by some model
- The combination of PFM and crystal plasticity through VPSCM enables the creation of a database for stress-strain curves. It facilitates the assessment of how tensile properties change during recrystallization (ReX) and the subsequent recovery of strength to the non-deformed state.
- This approach offers a valuable opportunity to establish a database for stress-strain curves of structural metals and alloys that have undergone various deformation modes (tension, compression, torsion) and recrystallization processes at a wide range of temperatures.

Thank you for your attention!