3D Laser Printing Direct Conversion of Information to Matter

Martin Wegener

Karlsruhe Institute of Technology (KIT), Germany

MSE Day, Hereon (Geesthacht), November 14, 2023

- From Bits & Voxels to Matter
- Recent Examples
 - ... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

- From Bits & Voxels to Matter

- Recent Examples

... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

Voxelation of an Object

3D Voxel – the Analogue of a 2D Pixel

Bildquelle: www.bilderzucht.de/blog

Bildquelle: www.bilderzucht.de/blog

Mechanical – Optical

image source: www.dabonline.de/2020/01/03/beton-aus-der-duese-3d-drucker/

image source: www.3dmattermadetoorder.kit.edu/laser_nanoprinting.php

- From Bits & Voxels to Matter
- Recent Examples

... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

- From Bits & Voxels to Matter
- Recent Examples
 - ... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

Diffractive Optical Element (DOE)

scheme, not to scale

Diffractive Optical Element (DOE)

can be compensated: V. Hahn et al., Adv. Funct. Mater. 30, 1907795 (2020)

DOE and Multi-Lens Array (MLA)

P. Kiefer et al., submitted (2023)

Laser-Printed DOE & MLA

multi-lens array

printed using Nanoscribe Quantum X

Iterative Precompensation

differences not visible by SEM; J. Weinacker et al., submitted (2023)

Multi-Focus Multi-Photon 3D Printer

P. Kiefer et al., submitted (2023)

7×7=49 Laser Foci

about 1/3 of the fs-laser power enters the entrance pupil of the microscope lens

Example I

Many Millions of Printed Particles

collaboration with pharmacy group of Prof. Regina Scherließ, Univ. Kiel, Germany

Many Millions of Printed Particles

also see: S. Bock et al., Adv. Drug Deliv. Rev. 186, 114341 (2022)

Many Millions of Printed Particles

P. Kiefer et al., submitted (2023)

In-Situ Real-Time Movie

foci: focus speed: NA: magnification: printing rate: wavelength: power @ pupil: photoinitiator:

7×7 = 49 1 m/s 1.4 100× 10⁸ voxels/s 790 nm 954 mW

photoinitiator monomer: wafer: BBK IP-DIP NPI 2 inch diam.

for photoinitiator BBK, see: P. Kiefer et al., Adv. Opt. Mater. 8, 2000895 (2020)

Example II

Chiral Unit Cell

used parameters: $a = 185 \,\mu m$, d/a = 0.04, L/a = 0.6

Cubic Chiral Crystal

Y. Chen, J.L.G. Schneider, M.F. Groß, et al., Adv. Funct. Mater. 33, 2302699 (2023)

>10¹² Voxels; >10⁶ Unit Cells

 $a = 60 \,\mu\text{m}, 10^8 \,\text{voxels/s}; P. Kiefer et al., submitted (2023)$

>10¹² Voxels; >10⁶ Unit Cells

 $a = 60 \,\mu\text{m}$, 10⁸ voxels/s; P. Kiefer et al., submitted (2023)

- From Bits & Voxels to Matter
- Recent Examples
 - ... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

- Diagnostics of 3D print job during printing, i.e., in-situ within the monomer, <u>before</u> development.
- Small refractive-index contrast.
- Optical inspection must be noninvasive, i.e., must <u>not</u> photopolymerize monomer.

Quantitative Phase Imaging (QPI)

R. Zvagelsky et al., ACS Photon. 10, 2901 (2023)

In Quantitative Phase Imaging (QPI), one needs to solve the transport-of-intensity equation (TIE) for the in-situ accumulated phase difference

$$\frac{k}{I_0(\vec{r})} \frac{\partial I(\vec{r})}{\partial z} = \vec{\nabla}^2 (\Delta \varphi_{\text{in-situ}}(\vec{r}))$$

with the optical wavenumber in the immersing resist

R. Zvagelsky et al., ACS Photon. 10, 2901 (2023)

Wide-Field z-Stacks

Example I: Staircase

Example II: DOE

61 defocus images taken after completion of the print job; correction applied

Quantitative Phase Imaging (QPI)

SDCM

R. Zvagelsky et al., ACS Photon. 10, 2901 (2023)

Reconstruction of 3D Structure?

ordinary wide-field images taken during print job

$2.5D \rightarrow 3D$

ill-defined inverse problem, can be solved by deep learning, trained by computations

- From Bits & Voxels to Matter
- Recent Examples
 - ... Ultrafast Polymer Laser Microprinting ... Optical In-Situ Diagnostics

Acknowledgements

Collaborating groups in MSE:

Prof. Dr. Jasmin Aghassi-Hagmann (EE, KIT, Germany)
Prof. Christopher Barner-Kowollik (Chemistry, QUT, Australia)
Prof. Eva Blasco (Chemistry, Univ. Heidelberg, Germany)
Prof. Stefan Bräse (Organic Chemistry, KIT, Germany)
Prof. Stefanie Dehnen (Chemistry, KIT, Germany)
Prof. Carsten Rockstuhl (Physics, KIT Germany)
Prof. Regina Scherließ (Pharmacy, Univ. Kiel, Germany)
Prof. Wolfgang Wenzel (Physics, KIT, Germany)

martin.wegener@kit.edu