Strategies towards active implants for cardiology

Department of Digital Design and Processing (PLD)

Institute of Active Polymers, Helmholtz-Zentrum Hereon

Dr. Katarzyna Polak-Kraśna

Institute of Active Polymers, Helmholtz-Zentrum Hereon

14/11/2023 MSE Day

Background – active implants

VS

inert material

"do no harm"

immunological response

active

sensing

feedback

stimulation

mechanical chemical

electrical

functionalisation

support healing

endothelialisation

reduce thrombogenicity

hereon

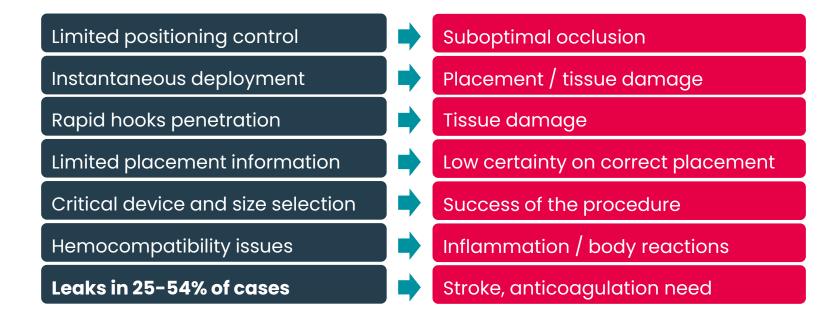
PLD Research

Department of Digital Design and Processing (PLD)

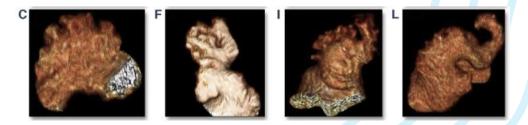
Institute of Active Polymers, Helmholtz-Zentrum Hereon


applying active materials and sensors towards medical devices

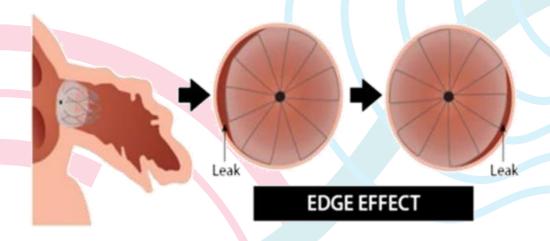
Current LAA Occluders



Occluders on the US and EU market: Watchman from Boston Scientific, Amplatzer Amulet from Abbott



Major issues with LAA occluders: Leaks

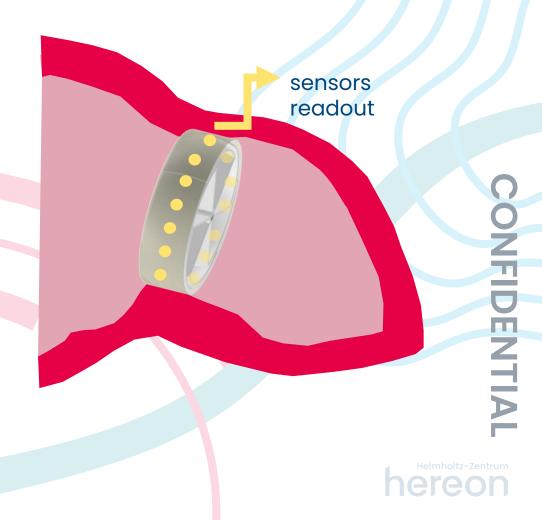

Up to **50%** of patients experience leaks after implantation

(Alkhouli 2022, Lakkireddy 2021)

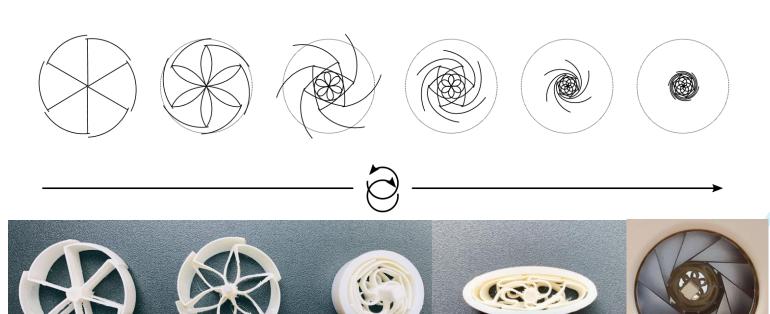
Aim: detect and eliminate leaks

Different LAA anatomies from left: cauliflower, windsock, cactus and chicken wing (Beigel, 2014)

Leak Mechanism in Endocardial Plug Placement (Pillarisetti, 2015)

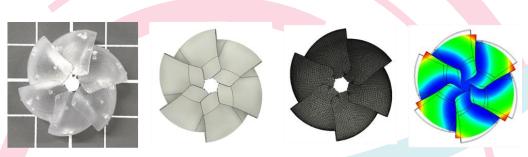

Our solution new design and sensor driven implantation

Controlled deployment and size


Sensor-based leak detection and procedure guidance

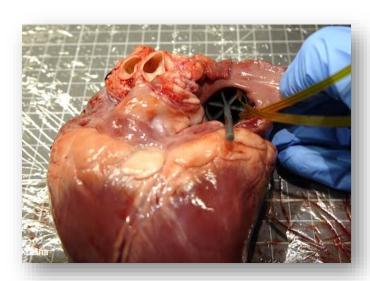
Hemocompatible covering

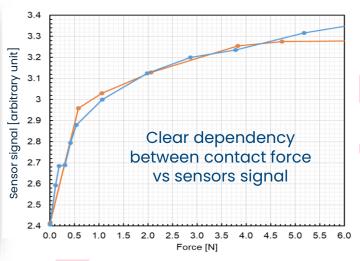
→ Improved outcomes

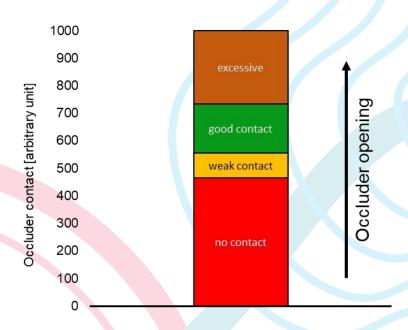


Novel design of polymer based LAA occluder

Implantation in mock LAA




3D printed concept device, CAD design, Finite Element mesh, and displacement analysis in the structure



Implant Digital Twin

Sensing approach to guide implantation

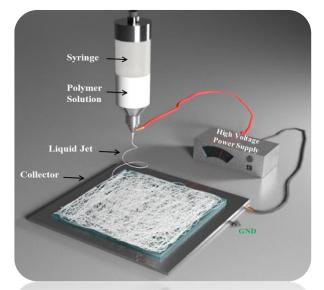
Signal measurement of sensors in contact with tissue in blood model with varying **contact force**

Tissue **contact detection** in porcine heart LAA

Feedback provided directly to interventional cardiologist during procedure

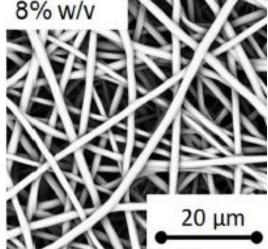
NFIDENTIAL

Novel materials for cardiac implants and implants covering

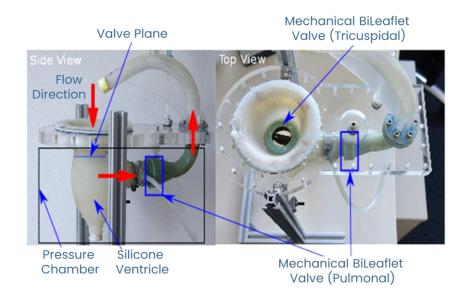

(PLD+WGC)

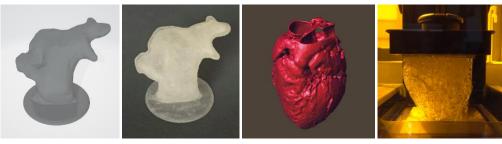
Chemical structure of P(LLA-co-CL)/PDLA

See Hanin's poster for more!


Thorough experimental characterisation + development of **materials' digital twins**

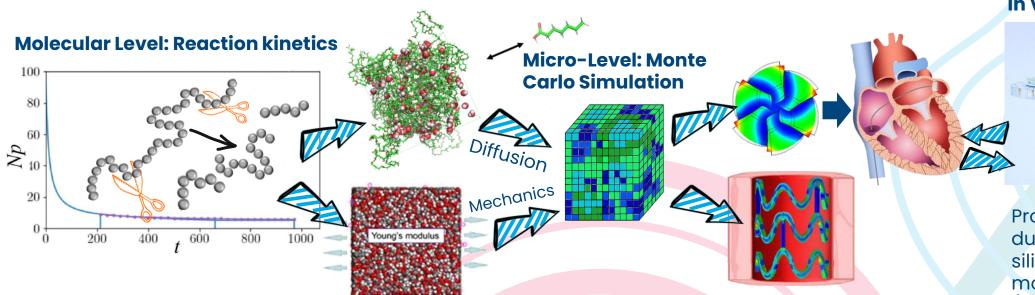
Electrospinning




Electrospinning of occluder **covering** material

Bench-top testing of cardiac devices

- 3D printed bench-top testing setups
- Pulse duplicator
- Patient specific anatomical models: mock hearts, LAAs, vessels



Patient specific LAA and heart 3D models reconstructed from patient images and 3D printed models

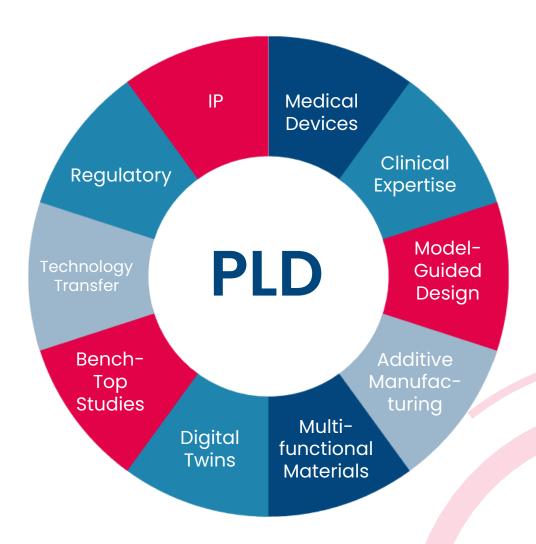
Digital polymer implant design by multiscale material and cardiac models (PLD + PLL + WGS + MS)

(combining MC, MD and FE), validated via novel sensor-based degradation measurement technology and bench-top testing platform

Nano-Level: Molecular Dynamics

In silico bench-top testing and in silico clinical trials will enable development of next generation implants supporting physiological healing and improving patients' outcomes

Device-Level: Finite Elements


Simulation of the cardiac environment including mass transport, solid and fluid mechanics (collaboration with Christian Cyron, MS)

In Vitro Experiment

Proprietary pulse duplicator with silicon heart for model verification / calibration

Our Team

Special thanks: Dr. Axel Neffe, Dr. Rainhard Machatschek, Dr. Schivam Saretia, Dr. Manfred Gossen

Dr. Katarzyna Polak-Kraśna: development of medical devices and smart programmable structures

Experience: biodesign, active materials, 4D printing, FE modelling, biomechanics and materials mechanics, regulatory approval

Dr. Markus Rheinthaler: interventional cardiologist (Charité), medical devices development (Hereon)

Experience: structural heart diseases, minimally invasive procedures, occluders, valves, stents

Hanin Alkhamis: PhD student proprietary materials for medical devices

Experience: biomedical engineering, 3D-printing, electrospinning, cell studies

Mario Rettschlag: technical support

Experience: materials processing and characterisation

Manan Suraiya: intern student 3D printing piezoelectrics Experience: 3D printing, materials, CAD

Dr. Marcin J. Kraśny: electronics engineer (guest researcher)

Experience: electronics for medical devices, sensors, wireless communication, animal trials

Adalbert Pakura: spin-off manager

Experience: CEO, digital health, business and strategy

Our Infrastructure

3D printers

- FDM Printers: MakerBot Method X, MakerBot Replicator 2x
- 3D-Bioplotter: melt printing, solution printing, hydrogels, cells printing, piezoelectric materials, pastes, i.e. magnesium
- Stratasys Connex 3 PolyJet printer: digital materials with desired properties
- Formlabs 3 SLA printer: for excellent resolution
- The Box: large scale FDM
- Hyrel 3D System 30M printer


Electrospinning

Piezoelectric characterisation (poling station, LCR meter, d33 meter, electrometer)

Thank you for your attention!

Sources

Elliott, et al. (2023) https://doi.org/10.1038/s41569-022-00820-8 Wolf, et al. (1991) https://doi.org/10.1161/01.STR.22.8.983 Beigel, et al. (2014) https://doi.org/10.1016/j.jcmg.2014.08.009 Pillarisetti, et al. (2015) https://doi.org/10.1016/j.hrthm.2015.03.020 Alkhouli et al. (2022) 766-778 https://doi.org/10.1016/j.jacep.2022.03.00 Lakkireddy, et al. (2021) https://doi.org/10.1161/CIRCULATIONAHA.121.057063 Elliott, et al. (2023) https://doi.org/10.1038/s41569-022-00820-8 Schlaganfall - Zahlen, Daten, Fakten - Schlaganfallbegleitung Cardiology Devices Market: Global Industry Analysis and Forecast | 2029

