Hybrid twins for production processes

Benjamin Klusemann

<u>Acknowledgement:</u> Frederic E. Bock, Norbert Huber, Zina Kallien, Sören Keller, Nikolai Kashaev,

Helmholtz-Zentrum hereon GmbH Institute of Materials Mechanics Solid State Materials Processing

Leuphana University Lüneburg

MSE Day 2023 14.11.2023

erc

Introduction

Motivation – Physics vs. Data Science

Process parameters	(Micro-)structure	Mechanical properties	Performance
--------------------	-------------------	-----------------------	-------------

Two perspectives on: Materials mechanics and processing

Physics:

- Experiments
- Analytical modelling
- Numerical modelling

Uncertainty Computing cost Explanation Extrapolation

Data science:

- Data management and analysis
- Machine learning

Amount of data Explanation Accuracy Generality

Source: Chinesta, F; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L.; Khaldi, F.E.B. Virtual, Digital and Hybrid Twins: A New Paradigm 2 in Data-Based Engineering and Engineered Data, Arch. Comput. Methods Eng. 2018, 27, 105–134.

Introduction

Motivation – Physics and Data Science

hereo

Chinesta, F; Material forming digital twins: the alliance between physics-based and data-driven models. ESAFORM plenary lecture 2022.

Introduction

Motivation – Physics and Data Science

Process parameters	(Micro-)structure	Mechanical properties	\mathbf{i}	Performance
---------------------------	-------------------	-----------------------	--------------	-------------

Challenges for <u>data</u> in material mechanics and engineering:

- \rightarrow Low availability and high in cost for acquisition
- \rightarrow Are often sparse with respect to time, space, variables and targets

Introduction Physics-integration into machine learning

Surrogate modelling of physical process simulations

Physics-based feature engineering

- Physical relationships between features
- Physical normalization of inputs and outputs via dimensionality analysis

Hybrid / discrepancy modelling

- Using underlying physics that show discrepancies to target
- Compensating discrepancies with machine learning

Physics-informed artificial neural networks

- Loss function formulated with respect to governing equations
- Required knowledge of governing equations (i.e. nonlinear PDEs)
- Via data-driven solution of nonlinear PDEs: they are fulfilled at sample points

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. *arXiv*:1711.10561 (2017).

Linka, K.; Hillgärtner, M.; Abdolazizi, K.P.; Aydin, R.C.; Itskov, M.; Cyron, C.J.; *J. Comput. Phys.* 429, 110010 (2021). Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. *Comput. Methods Appl. Mech. Engrg.* 379, 11374 (2021). Upadhyay, V., Jain, P. K., and Mehta, N. K. Conf. Proc. of SocProS 2011, 761–768 (2012).

Xiong, J., Zhang, G., Hu, J., and Wu, L.; J. Intell. Manuf. 25, 157–163 (2014).

Sahu, N. K., Andhare, A. B., Andhale, S., and Abraham, R. R. IOP Conf. Ser. Mater. Sci. Eng. 346:12037 (2018).

Verleysen, M.; François, D.; Simon, G.; Wertz, V. *IWANN 2003*, LNCS 2687, pp. 105-112, (2003).

Huber, N.; Tsakmakis, C. *J. Mater. Res.* 19, 101–113 (2004).

González, D; Chinesta, F; Cueto, E. *Front. Mater.* 6, 752 (2019).

Moya, B.; Badías, A.; Alfaro, I.; Chinesta, F.; Cueto, E.; *Int. J. Numer. Methods Eng.* 25, 87 (2020).

Havinga, J.; Mandal, P.K.; van den Boogaard, T. *Int. J. Mater. Form.* 13, 663–673 (2020).

Examples overview Hybrid twins for production processes

Case study 1 Physical feature engineering to improve mechanical performance prediction (Friction Riveting)

Case study 2

Simulation-assisted machine learning predictions of process behaviour and deposit geometry (Friction Surfacing)

Case study 3

Hybrid modelling via machine learning correction of physical model output (Laser Shock Peening)

Examples overview Hybrid twins for production processes

Case study 1 Physical feature engineering to improve mechanical performance prediction (Friction Riveting)

Case study 2 Simulation-assisted machine learning predictions of process behaviour and deposit geometry (Friction Surfacing) Case study 3 Hybrid modelling via machine learning correction of physical model output (Laser Shock Peening)

Helmholtz-Zentrum

F.E. Bock, L.A. Blaga, and B. Klusemann. Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning. *Procedia Manufacturing*, 47:615–622, 2020.

7

Case study 1: Introduction & Methodology Friction Riveting – a solid state joining process

Advantages:

- Metal is processed below melting temperature
- · No defects such as pores or hot cracking (in contrast to fusion-based joining processes)
- Bonding is achieved via mechanical anchoring and adhesion forces
- No surface pre-treatment or post-processing required

Process parameter variables

Physics-based feature engineering

- Rotational speed
- Friction time and force
- Forging time and force

- Mechanical energies E_M
 - Friction E_f
 - Plastic deformation E_d

Aim: predict ultimate tensile force

T-pull test setup

Rivet: AA2024-T351 Image: Plate: Polyetherimide Pina Cipriano et al. 2018

8

Case study 1: Results

Input features: process parameters and mechanical energies

Performance measure	Random state	1 st -LR	2 nd -LR	SVR	DTR	RFR
D ²	9	0.72	-0.15	0.48	0.92	0.92
R ²	33	0.71	-0.2	0.11	0.90	0.92
	42	0.55	-0.13	0.21	0.86	0.90
Standard	9	1404	2839	1917	748	702
deviation	33	1356	2741	1384	719	691
in N	42	1860	3082	1358	1056	719

Main observations:

- LR and SVR predictions did <u>not</u> improve
- DTR and RFR predictions improve (best)

Result: Benchmark (R² = 77.9%) is exceeded

(previously established linear model)

1st-order linear regression

2nd-order linear regression

Decision tree regression

Random forest regression Support vector regression

of DoE-center-point replicates

Success

Good and robust

ML-prediction

Experiment

Standard deviation

Case study 1: Results

Input features: process parameters and mechanical energies

(previously established linear model)

Examples overview Hybrid twins for production processes

Case study 1 Physical feature engineering to improve mechanical performance prediction (Friction Riveting)

Case study 2

Simulation-assisted machine learning predictions of process behaviour and deposit geometry (Friction Surfacing) Case study 3 Hybrid modelling via machine learning correction of physical model output (Laser Shock Peening)

Bock, F.E.; Kallien, S.; Huber, N.; Klusemann, B. (**2024**). Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing, *Computer Methods in Applied Mechanics and Engineering* 418, 116453.

Case study 2 Friction surfacing

Advantages

- + Deposition of dissimilar and non-fusion weldable materials
- + Fine-grained recrystallized microstructure
- + Low requirements for the process environment
- + Environmentally friendly ('green' process)
- + Low heat input

Disadvantages

- Discontinuous process
- Remaining stud needs to be recycled

Process parameters: Axial force (F) F, Rotation speed (RS) $\boldsymbol{\omega}$, Travel speed (TS) v

Case study 2: Introduction Problem statement

Main modelling challenges for geometry & process behaviour

- Required <u>a priori</u>
- Depend on process temperatures
- Process temperatures, in turn, depend on process parameters and substrate & backing materials

Question: How can the number of experiments be reduced to a minimum?

Solution proposal: Use machine learning and exploit physics contained in heat-transfer model

Case study 2: Methodology Proposed solution – simulation assisted machine learning

Milestones

- Experimental variation of process parameters and material properties (to obtain v_{cr} , M, t, w)
- Data-mine numerical heat transfer model to obtain T_{max}
- Build predictive models for targets T_{max} , feed rate v_{cr} and torque M
- Build predictive models for targets: thickness *t* and width *w*
- Evaluate the use of process behaviour targets as features to predict deposit geometry

Case study 2: Result overview Predicted versus true values for all targets

Achievements:

- Successful prediction of all targets
- Very good, good and acceptable agreements between predicted and true values
- Generalization is also good and acceptable based on low error on cross-space (test2 set)

Case study 2: Result overview Feature dependence of all targets

Evaluation of machine learning models

- Validation: Relations between targets and process parameters F, RS, TS agree with literature
- Identification: Significant impacts by thermal material properties besides process parameters
- **Finding**: k_s and k_b among top 4 features for all targets
 - \rightarrow Indirect confirmation: high impact of temperature on all targets

SHAP

Image: https://github.com/slundberg/shap

Case study 2: Conclusion

Examples overview Hybrid twins for production processes

Case study 1 Physical feature engineering to improve mechanical performance prediction (Friction Riveting)

Case study 2 Simulation-assisted machine learning predictions of process behaviour and deposit geometry (Friction Surfacing)

Case study 3

Hybrid modelling via machine learning correction of physical model output (Laser Shock Peening)

F. E. Bock, S. Keller, N. Huber, and B. Klusemann. Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions. *Materials*, 14(8):1883 (19p.), 2021.

Helmholtz-Zentrum

Case study 3: Introduction Laser shock peening

Case study 3: Problem statement

Enhance analytical model via ML to reach FE solution

Output: Residual stress

High-fidelity finite element model

Output: Residual stress

Case study 3: Methodology Hybrid modelling implementation

Pulse parameter ranges:

	P _{max} [MPa]	<i>t</i> _{<i>I</i>} [ns]	<i>t</i> _{II} [ns]
Min.	800	12	43
Max.	2200	66	300

Material: AA2024-T3

→ frequently used in aircrafts

Case study 3: Results Benchmark: Extrapolation via hybrid and data-driven model

	Hybrid	Model	Data-Driven ANN		
Data Set	<i>R</i> ² in %	MSE	<i>R</i> ² in %	MSE in MPa ²	
Training	99.90	4.33	99.86	6.32	
Validation	99.86	7.38	99.76	12.39	
Test	99.15	28.63	95.89	137.58	
Expanded space	99.39	30.17	65.00	1717.18	

Main observations

- Hybrid model: Very good performance
- Data-driven: inferior generalization

Case study 3: Results

Benchmark: Extrapolation via hybrid and data-driven model

Summary

200

100

-100 -001- bredicted value in MPa -200- -200-

-400

- Hybrid model is efficient & accurate
- The approach exhibits good generalization
- Process parameter space is expandable within trained corrections
- Benchmark: Hybrid model outperformed data-driven model when \rightarrow Process parameter-space is expanded

 \rightarrow Data is reduced

-400 - 300 - 200 - 1000 100 true/desired value in MPa

-400-300-200-100 0 100 200 true/desired value

	Hybrid Model		Data-Driven ANN		
Data Set	<i>R</i> ² in %	MSE	R^2 in %	MSE in MPa ²	
Training	99.90	4.33	99.86	6.32	
Validation	99.86	7.38	99.76	12.39	
Test	99.15	28.63	95.89	137.58	
Expanded space	99.39	30.17	65.00	1717.18	

200

Main observations

0.0

0.2

Hybrid model: Very good performance

n/N

Data-driven: inferior generalization

err :=

Conclusions

Case study 1 (Friction Riveting)

Physics-based feature engineering improves prediction performance

Case study 2 (Friction Surfacing)

- Physics-based data-augmentation and data-mining enhances predictions
- Simulation assisted machine learning allows to keep experiments to a minimum

Case study 3 (Laser Shock Peening)

- Hybrid model is efficient & accurate with good generalization
- Process parameter space is expandable within trained corrections
- Hybrid model outperformed data-driven model (generalization on scarce data)

The authors gratefully acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101001567) within the ERC consolidator grant MA.D.AM.

Thank You.

Publications:

Bock, F; Aydin, R.; Cyron, C.; Huber, N.; Kalidindi, S.R., Klusemann, B. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. Front. Mater. 2019, 6, 443.

Bock, F.; Keller, S.; Huber, N.; Klusemann, B. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions, *Materials* 2021, 14 (8), 1883.

Bock, F.E.; Kallien, S.; Huber, N.; Klusemann, B. (2024). Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing, Computer Methods in Applied Mechanics and Engineering 418, 116453.

Benjamin Klusemann Helmholtz-Zentrum hereon GmbH Institute of Materials Mechanics

Max-Planck-Straße | 21502 Geesthacht T +49 4152 87-2552 benjamin.klusemann@hereon.de

