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Introduction
Motivation – Physics vs. Data Science

Two perspectives on: Materials mechanics and processing

Physics:
- Experiments
- Analytical modelling
- Numerical modelling

Source: Chinesta, F; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L.; Khaldi, F.E.B. Virtual, Digital and Hybrid Twins: A New Paradigm 
in Data-Based Engineering and Engineered Data. Arch. Comput. Methods Eng. 2018, 27, 105–134.

Data science:
- Data management and analysis
- Machine learning

Process parameters (Micro-)structure Mechanical properties Performance

Variability
Uncertainty
Computing cost
Explanation 
Extrapolation
….

Amount of data
Explanation
Accuracy
Generality
…
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Introduction
Motivation – Physics and Data Science

Two perspectives on: Materials mechanics and processing

Physics:
- Experiments
- Analytical modelling
- Numerical modelling

Data science:
- Data management and analysis
- Machine learning

Process parameters (Micro-)structure Mechanical properties Performance

Chinesta, F; Material forming digital twins: the alliance between physics-based and data-driven models. ESAFORM plenary lecture 2022. 
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Introduction
Motivation – Physics and Data Science

Process parameters (Micro-)structure Mechanical properties Performance

Challenges for data in material mechanics and engineering:

 Low availability and high in cost for acquisition

 Are often sparse with respect to time, space, variables and targets

Achieve:
- Low prediction error
- Good generalization
- Parameter space expansion

Use: 
- Minimum amount of data
- Established knowledge 

To increase efficiency
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Introduction
Physics-integration into machine learning

Surrogate modelling of physical process simulations 

Physics-based feature engineering 
- Physical relationships between features
- Physical normalization of inputs and outputs via dimensionality analysis

Hybrid / discrepancy modelling
- Using underlying physics that show discrepancies to target
- Compensating discrepancies with machine learning

Physics-informed artificial neural networks
- Loss function formulated with respect to governing equations
- Required knowledge of governing equations (i.e. nonlinear PDEs)
- Via data-driven solution of nonlinear PDEs: they are fulfilled at sample points

Moya, B.; Badías, A.; Alfaro, I.; Chinesta, F.; Cueto, 
E.; Int. J. Numer. Methods Eng. 25, 87 (2020).

Verleysen, M.; François, D.; Simon, G.; Wertz, V.
IWANN 2003, LNCS 2687, pp. 105-112, (2003).

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. arXiv:1711.10561 (2017).

Linka, K.; Hillgärtner, M.; Abdolazizi, K.P.; Aydin, R.C.; Itskov, M.; Cyron, C.J.; J. Comput. Phys. 429, 110010 (2021).

Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. Comput. Methods Appl. Mech. Engrg. 379, 11374 (2021).

Le
ve

l o
fi

nt
eg

ra
tio

n

González, D; Chinesta, F; Cueto, E. Front. Mater. 
6, 752 (2019).

Havinga, J.; Mandal, P.K.; van den Boogaard, T. 
Int. J. Mater. Form. 13, 663–673 (2020).

Huber, N.; Tsakmakis, C. J. Mater. Res. 19, 101–
113 (2004).

Upadhyay, V., Jain, P. K., and Mehta, N. K. Conf. 
Proc. of SocProS 2011, 761–768 (2012).
Xiong, J., Zhang, G., Hu, J., and Wu, L.; J. Intell. 
Manuf. 25, 157–163 (2014).
Sahu, N. K., Andhare, A. B., Andhale, S., and 
Abraham, R. R. IOP Conf. Ser. Mater. Sci. Eng. 
346:12037 (2018).
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Examples overview
Hybrid twins for production processes

Case study 1
Physical feature engineering

to improve mechanical 
performance prediction 

(Friction Riveting)

Case study 2
Simulation-assisted machine 

learning predictions of process 
behaviour and deposit geometry

(Friction Surfacing) 

Case study 3
Hybrid modelling via 

machine learning correction 
of physical model output 
(Laser Shock Peening)
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Examples overview
Hybrid twins for production processes

Case study 1
Physical feature engineering

to improve mechanical 
performance prediction 

(Friction Riveting)

Case study 2
Simulation-assisted machine 

learning predictions of process 
behaviour and deposit geometry

(Friction Surfacing) 

Case study 3
Hybrid modelling via 

machine learning correction 
of physical model output 
(Laser Shock Peening)

F.E. Bock, L.A. Blaga, and B. Klusemann. Mechanical performance prediction for friction riveting 
joints of dissimilar materials via machine learning. Procedia Manufacturing, 47:615–622, 2020.



Advantages:
• Metal is processed below melting temperature
• No defects such as pores or hot cracking (in contrast to fusion-based joining processes)
• Bonding is achieved via mechanical anchoring and adhesion forces
• No surface pre-treatment or post-processing required

Process parameter variables Physics-based feature engineering      Aim: predict ultimate tensile force
• Rotational speed
• Friction time and force 
• Forging time and force

Case study 1: Introduction & Methodology
Friction Riveting – a solid state joining process
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• Mechanical energies 𝐸𝐸𝑀𝑀
• Friction 𝐸𝐸𝑓𝑓
• Plastic deformation 𝐸𝐸𝑑𝑑

Image: 

Pina Cipriano et al. 2018
Rivet: AA2024-T351
Plate: Polyetherimide

T-pull test setup

𝐸𝐸𝑀𝑀 = 𝐸𝐸𝑓𝑓 + 𝐸𝐸𝑑𝑑
= ∫𝑀𝑀 � 𝜔𝜔 � 𝑑𝑑𝑑𝑑 +∫𝐹𝐹 � 𝜗𝜗 � 𝑑𝑑𝑑𝑑

torque rotational 
speed

axial 
force

deformation 
rate



Main observations:
• LR and SVR predictions did not improve
• DTR and RFR predictions improve (best)
Result: Benchmark (R2 = 77.9%) is exceeded

(previously established linear model)

Case study 1: Results
Input features: process parameters and mechanical energies

σexp. = 1373 N
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Performance measure Random state 1st-LR 2nd-LR SVR DTR RFR

R2
9 0.72 -0.05 0.57 0.36 0.56

33 0.56 -0.26 0.25 -0.22 0.12
42 0.65 0.52 0.65 0.02 0.23

Standard 
deviation

in N

9 1364 2727 1541 2136 1756
33 1319 2603 1168 2052 1686
42 1294 2029 1726 2658 2488

Performance measure Random state 1st-LR 2nd-LR SVR DTR RFR

R2
9 0.72 -0.15 0.48 0.92 0.92

33 0.71 -0.2 0.11 0.90 0.92
42 0.55 -0.13 0.21 0.86 0.90

Standard 
deviation

in N

9 1404 2839 1917 748 702
33 1356 2741 1384 719 691
42 1860 3082 1358 1056 719



Main observations:
• LR and SVR predictions did not improve
• DTR and RFR predictions improve (best)
Result: Benchmark (R2 = 77.9%) is exceeded
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Case study 1: Results
Input features: process parameters and mechanical energies

σexp. = 1373 N
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Performance measure Random state 1st-LR 2nd-LR SVR DTR RFR

R2
9 0.72 -0.05 0.57 0.36 0.56

33 0.56 -0.26 0.25 -0.22 0.12
42 0.65 0.52 0.65 0.02 0.23

Standard 
deviation

in N

9 1364 2727 1541 2136 1756
33 1319 2603 1168 2052 1686
42 1294 2029 1726 2658 2488

Performance measure Random state 1st-LR 2nd-LR SVR DTR RFR

R2
9 0.72 -0.15 0.48 0.92 0.92

33 0.71 -0.2 0.11 0.90 0.92
42 0.55 -0.13 0.21 0.86 0.90

Standard 
deviation

in N

9 1404 2839 1917 748 702
33 1356 2741 1384 719 691
42 1860 3082 1358 1056 719

• Mechanical energies 
• Non-linear set-actual corrective
• Compensate for high uncertainty of 

the experimental process and its control
• RFR best maps non-linear relationships between 

• Process parameter
• Mechanical energies
• Ultimate tensile force

Interpretations
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Examples overview
Hybrid twins for production processes

Case study 1
Physical feature engineering

to improve mechanical 
performance prediction 

(Friction Riveting)

Case study 2
Simulation-assisted machine 

learning predictions of process 
behaviour and deposit geometry

(Friction Surfacing) 

Case study 3
Hybrid modelling via 

machine learning correction 
of physical model output 
(Laser Shock Peening)

Bock, F.E.; Kallien, S.; Huber, N.; Klusemann, B. (2024). Data-driven and physics-based modelling of process behaviour
and deposit geometry for friction surfacing, Computer Methods in Applied Mechanics and Engineering 418, 116453.
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Advantages

+ Deposition of dissimilar and non-fusion weldable materials

+ Fine-grained recrystallized microstructure

+ Low requirements for the process environment

+ Environmentally friendly (‘green’ process)

+ Low heat input

Disadvantages

− Discontinuous process

− Remaining stud needs to be recycled

Process parameters: Axial force (F) F, Rotation speed (RS) ω , Travel speed (TS) v

F

Stud

Substrateω

Case study 2
Friction surfacing 
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Case study 2: Introduction
Problem statement

width
thickness

deposit

substrate

hole drilled for thermocouple (Tc)

Image: Kallien, Z.; Klusemann, B. Combined experimental-numerical analysis of the temperature evolution and distribution during friction surfacing. 
Surf. Coat. Technol. 437, 128350 (2022).

Cross section view

Main modelling challenges for geometry & process behaviour
• Required a priori
• Depend on process temperatures
• Process temperatures, in turn, depend on process parameters and substrate & backing materials

Question: How can the number of experiments be reduced to a minimum?

Solution proposal: Use machine learning and exploit physics contained in heat-transfer model



Milestones
• Experimental variation of process parameters and material properties (to obtain 𝑣𝑣𝑐𝑐𝑐𝑐, 𝑀𝑀, 𝑡𝑡, 𝑤𝑤)
• Data-mine numerical heat transfer model to obtain 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
• Build predictive models for targets 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, feed rate 𝑣𝑣𝑐𝑐𝑐𝑐 and torque 𝑀𝑀
• Build predictive models for targets: thickness 𝑡𝑡 and width 𝑤𝑤
• Evaluate the use of process behaviour targets as features to predict deposit geometry
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Case study 2: Methodology
Proposed solution – simulation assisted machine learning

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
• Force F
• Rotation speed RS
• Travel speed TS

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 & 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
• Thermal conductivity: 𝒌𝒌𝒔𝒔, 𝒌𝒌𝒃𝒃
• Specific heat: 𝒄𝒄𝒔𝒔, 𝒄𝒄𝒃𝒃
• Thickness: 𝒕𝒕𝒔𝒔, 𝒕𝒕𝒃𝒃

Deposit geometryProcess behavior

𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦

Experimental data acquisition

Numerical data mining

Performance evaluation and result interpretation

Feed rate 𝐯𝐯𝐜𝐜𝐜𝐜

Torque 𝐌𝐌

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Thickness 𝐭𝐭

Width 𝐰𝐰

?

?

?



Achievements: 
• Successful prediction of all targets
• Very good, good and acceptable agreements between predicted and true values
• Generalization is also good and acceptable based on low error on cross-space (test2 set)

Case study 2: Result overview
Predicted versus true values for all targets
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Maximum temperature Feed rate Torque Thickness Width



Case study 2: Result overview
Feature dependence of all targets
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Maximum temperature Feed rate Torque Thickness Width

Evaluation of machine learning models
• Validation: Relations between targets and process parameters F, RS, TS agree with literature
• Identification: Significant impacts by thermal material properties besides process parameters
• Finding: 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑏𝑏 among top 4 features for all targets

 Indirect confirmation: high impact of temperature on all targets Image: https://github.com/slundberg/shap



Case study 2: Conclusion
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Maximum temperature Feed rate Torque Thickness Width

Evaluation of machine learning models
• Validation: Relations between targets and process parameters F, RS, TS agree with literature
• Identification: Qualitative impacts of features on targets
• Finding: 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑏𝑏 among top 4 features for all targets

 Indirect confirmation: high impact of temperature on all targets

Impact
• Thickness and width can be tailored separately by adjusting process 

parameters and material properties according to the presented findings

Lessons learned
• Prediction of feed rate 𝑣𝑣𝑐𝑐𝑐𝑐 was improved by 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 as feature
• Depending on the target  Different ML techniques served as best models
• Explainable AI: SHAP values enabled determination of feature dependence

• Influence of process parameters 
• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 influences 𝑡𝑡, 𝑤𝑤 and 𝑣𝑣𝑐𝑐𝑐𝑐 (in agreement with literature)
• Thermal conductivity shows high impact (always among top 4 features)

Main achievements
• Physics-based data augmentation improved prediction performance
• Built ML models show acceptable prediction performance for all targets
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Examples overview
Hybrid twins for production processes

Case study 1
Physical feature engineering

to improve mechanical 
performance prediction 

(Friction Riveting)

Case study 2
Simulation-assisted machine 

learning predictions of process 
behaviour and deposit geometry

(Friction Surfacing) 

Case study 3
Hybrid modelling via 

machine learning correction 
of physical model output 
(Laser Shock Peening)

F. E. Bock, S. Keller, N. Huber, and B. Klusemann. Hybrid modelling by machine learning corrections of 
analytical model predictions towards high-fidelity simulation solutions. Materials, 14(8):1883 (19p.), 2021.



Process advantages
 Locally induced residual stresses
 Flexible controllability
 Minimal material changes

Case study 3: Introduction
Laser shock peening
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Process Result

Stress concentration

Compressive 
residual stresses

Compact tension specimen Image © Sören Keller

Residual stress fields can
 Slow down crack growth
 Increase fatigue resistance

Induced stress distribution

Improving damage tolerance
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Input: Pressure pulse

High-fidelity finite element model

Low fidelity semi-analytical model Output: Residual stress

Output: Residual stress

Case study 3: Problem statement
Enhance analytical model via ML to reach FE solution
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Case study 3: Methodology
Hybrid modelling implementation

Material: AA2024-T3
 frequently used in aircrafts

Pulse parameter ranges:
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Case study 3: Results
Benchmark: Extrapolation via hybrid and data-driven model

Main observations
 Hybrid model: Very good performance
 Data-driven: inferior generalization
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Case study 3: Results
Benchmark: Extrapolation via hybrid and data-driven model

Main observations
 Hybrid model: Very good performance
 Data-driven: inferior generalization

Summary
• Hybrid model is efficient & accurate
• The approach exhibits good generalization
• Process parameter space is expandable within trained corrections
• Benchmark: Hybrid model outperformed data-driven model when
 Process parameter-space is expanded
 Data is reduced
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Conclusions

Case study 1 (Friction Riveting)
• Physics-based feature engineering improves prediction performance

Case study 2 (Friction Surfacing)
• Physics-based data-augmentation and data-mining enhances predictions
• Simulation assisted machine learning allows to keep experiments to a minimum

Case study 3 (Laser Shock Peening)
• Hybrid model is efficient & accurate with good generalization
• Process parameter space is expandable within trained corrections
• Hybrid model outperformed data-driven model (generalization on scarce data)

The authors gratefully acknowledge funding from the 
European Research Council (ERC) under the European 
Union's Horizon 2020 research and innovation 
programme (grant agreement No 101001567) within the 
ERC consolidator grant MA.D.AM.
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