
ISAPP School 2024 ꞏ KIT / Bad Liebenzell

Geant4 Simulations for Rare
Event Searches

Holger Kluck ꞏ HEPHY ꞏ holger.kluck@oeaw.ac.at

1/3: Theory of MC Simulations, Programming Environment,
Basics of Geant4

Scope

• Q: What will you gain from this lecture?

• A: You will get a basic understanding how to implement and run a
Monte Carlo (MC) simulation with the Geant4 code. You should get
an understanding what MC background models of rare event searches
can do and what their limitations are.

2

Schedule

• Today:
Theory of MC simulations, programming environment,
and basics of Geant4

• Friday (20 Sep., 14:00 – 15:45):
Implement experimental geometries, generate primary particles, store
data and analyse it with ROOT

• Wednesday (25 Sep., 16:15 – 18:00):
Simulation of
• intrinsic backgrounds for deep underground experiments searching for Dark Matter

• atmospheric backgrounds for reactor based neutrino experiments at shallow
experimental sites

3

Mode of the lecture

• The lecture will alternate between theory parts (~15min, me talking)
and hands-on examples (~20min, you simulating)

• During the hands-on you can also discuss the problem at hand with
your fellow student

• If you have questions – don’t hesitate to ask them at any time!

4

What is your previous knowledge?

5

Theory* of MC simulations
*To the extend needed to understand an actual simulation and its terminology
- not more

6

Research Objectives

• Treat a MC simulation as a virtual experiment and decided before starting
it*:
• What is the research objective? What question should the experiment

answer?

• What is the observable? What should be (virtually) measured?

• What is known about the boundary conditions of the experiment? Are
positions constrained by the geometry of the apparatus that should be
simulated?

*At least in a first approximation; as with real experiments, first results may cause refinements or extension of
the initial objectives

7

Research Objectives

• Objective: What is the deflection
angle 𝜃 of an alpha particle of
energy E emitted in direction 𝛽
at position 𝑟0 after passing
through a monoatomic gold
layer with atoms at 𝑟Au,𝑖?

Au atoms

𝛼

𝛽

𝜃

8

Input And Output

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Output:
• Deflection angle 𝜃

Au atoms

𝛼

𝛽

𝜃

9

Primary Particle, Geometry, Observable

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Output:
• Deflection angle 𝜃

Au atoms

𝛼

𝛽

𝜃

Defines the
primary particle

Defines the
geometry of the
experiment

The observable
that should be
measured10

Physics Model

Au atoms

𝛼

𝛽

𝜃

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Process: ?
(input → output)

• Output:
• Deflection angle 𝜃

Defines the
primary particle

Defines the
geometry of the
experiment

The observable
that should be
measured

A model of
the physical
interactions

11

Ideal Rutherford Scattering

• Process (input→ output):

Rutherford scattering

cot
𝜃

2
=
4𝜋𝜖0𝜇𝑣

2

𝑄Au ⋅ 𝑄α
⋅ 𝑏

with impact parameter

𝑏 = 𝑏 𝛽, 𝑟0, 𝑟Au ,

projectile velocity

𝑣 = 𝑣 𝐸 ,

and reduced mass

𝜇 = 𝜇 𝑚Au, 𝑚α

computable from inputs

Au atoms

𝛼

𝛽

𝜃

b

12

Ideal Rutherford Scattering

• Process (input→ output):

𝜃 = 𝜃 𝐸, 𝛽, 𝑟0, 𝑟Au ,

• Rutherford scattering is a classic theory –
no randomness is involved

• In an ideal world (perfect preparation of
incident particle, perfect knowledge of
scatterer), repetitions of the experiment
will yield same results

Au atoms

𝛼

𝛽

𝜃

b

13

Ideal Real Rutherford Scattering

• Process (input → output):

𝜃 = 𝜃 𝐸, 𝛽, 𝑟0, 𝑟Au ,

• In reality, there are uncertainties:
• No particle can be perfectly prepared

(𝐸, 𝛽, 𝑟0)

• No perfect knowledge about scatterer
(𝑏(𝑟Au))

→Repetition of the experiment will yield
different results

→Randomness!

Au atoms

𝛼

𝛽

𝜃

b

14

Randomness

• Assume that the input variables are the
components of a random vector

𝑋 = 𝐸, 𝛽, 𝑟0, 𝑟Au
with dimension 𝑛 = 4, …

• With all possible realisations Ԧ𝑥 that 𝑋 can
take are given by the sample space Ω:
Ԧ𝑥 ∈ Ω, …

• And the probability density function (pdf)
to realize an actual Ԧ𝑥 is 𝑃(Ԧ𝑥), …

• In physics, with cross section 𝜎: 𝑃 Ԧ𝑥 ∝ 𝜎 Ԧ𝑥

Au atoms

𝛼

𝛽

𝜃

b

15

Expectation Value

• Then also the output Θ(𝑋) is a random
variable with realisation 𝜃

• And we can use the expectation value

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

to consider the randomness of the
searched for output

Au atoms

𝛼

𝛽

𝜃

b

16

Disadvantages

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

• But it has some potential disadvantages:

• Already this simple experiment requires a 4-
dimensional integration

• Dimensionality increase rapidly with more
realistic modelling of the experiment

• Ω (and 𝑃(Ԧ𝑥)) can be very complex, e.g. if r0
is constrained by some complex source
geometry

Au atoms

𝛼

𝛽

𝜃

b

17

Monte Carlo Simulation

Monte Carlo Simulation: draw 𝑁 samples

Ԧ𝑥𝑖 𝑖=0
𝑁 from Ω and approximate

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

with the estimator of the expectation value

෠𝐸 Θ =
1

𝑁
෍

𝑖=0

𝑁

𝜃 Ԧ𝑥𝑖

→ Solve the integral via
Monte Carlo integration

𝛼

𝑖 = 0

Ԧ𝑥0 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,0
𝜃0 = 𝜃(Ԧ𝑥0)

𝛼

𝛼

𝛼

𝑖 = 1

Ԧ𝑥1 = 𝐸0, 𝛽1, 𝑟0, 𝑟Au,0
𝜃1 = 𝜃(Ԧ𝑥1)

𝑖 = 2

Ԧ𝑥2 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,2
𝜃2 = 𝜃(Ԧ𝑥2)

𝑖 = 3

Ԧ𝑥3 = 𝐸3, 𝛽0, 𝑟0, 𝑟Au,0
𝜃3 = 𝜃(Ԧ𝑥3)

18

Advantanges

• Due to the Law of Large Numbers
lim
𝑁→∞

෠𝐸 Θ = 𝐸 Θ

accuracy can get arbitrary good

• Compared to numerical integration, e.g.
trapezoidal rule, MC integration is fast:
Improve accuracy for d-dimensional
integral like

• 1/𝑛2/𝑑 for trapezoidal rule with n points

• 1/𝑛1/2 for MC integration with n samples:

→ for d>4, MC integration is faster

𝛼

𝑖 = 0

Ԧ𝑥0 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,0
𝜃0 = 𝜃(Ԧ𝑥0)

𝛼

𝛼

𝛼

𝑖 = 1

Ԧ𝑥1 = 𝐸0, 𝛽1, 𝑟0, 𝑟Au,0
𝜃1 = 𝜃(Ԧ𝑥1)

𝑖 = 2

Ԧ𝑥2 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,2
𝜃2 = 𝜃(Ԧ𝑥2)

𝑖 = 3

Ԧ𝑥3 = 𝐸3, 𝛽0, 𝑟0, 𝑟Au,0
𝜃3 = 𝜃(Ԧ𝑥3)

19

Samples as Particle Trajectories

As particle physics simulation can be
considered virtual experiments, the
samples have a clear interpretation:

→They describe the trajectory (=track) a
particle using the sampled values as input
variables would follow within the given
physics model

→Like in real experiments, one can
“measure” more than one observable, e.g.
also energy loss Δ𝐸:

the output is then a tuple 𝜃 → Ԧ𝜃 = (𝜃, Δ𝐸)

Au atoms

20

Workflow of a Simulation
• Setup the virtual experiment:

• Initialize the geometry model: which materials
are placed at which regions or positions?

• Initialize the physics model: compute material
dependent model parameters (based on the
geometry model)

• Decide how many samples 𝑁should be drawn

Initialise physics model
and geometry model

21

Workflow of a Simulation
• Use a primary particle generator to

sample the random variables that define
the primary particle

• Initial direction

• Initial position (considering constrains from
the geometry model, e.g. if primary particles
can only be created within a source region)

• Kinetic energy

• Particle type

Initialise physics model
and geometry model

Create primary particle

22

Workflow of a Simulation
• Start the track of the primary particle

• Based on the physics model, compute the
mean free path 𝜆, i.e. average distant
between two interactions

• Move the particle along the track by 𝜆,
make one step

• Compute the interaction, if needed
sample input parameters, apply resulting
changes on the track, e.g. changing
direction due to deflection, reduce kinetic
energy due to energy loss

• Update the observable(s) (e.g. deflection
angle, energy loss) accordingly

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

Step

23

Workflow of a Simulation
• Are there more processes that can apply

to the particle?

• If yes (e.g. multiple scattering in a finite
volume), repeat the previous step

• “No” could mean

• The particle is unstable, and ceased to exist

• The particle moved out of the finite
geometrical model

• The user deliberately limited the amount of
iterations due to time or computing costs

• If no, then the track is finished
→ one sample Ԧ𝑥 from the total sample
space Ω was drawn

→ observable Ԧ𝜃(Ԧ𝑥) was computed

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

Yes More
processes?

24

Workflow of a Simulation
• All steps from creating the primary

particle until ending the track are some
times referred to as an event

• Within one event, one sample from the
total sample space Ω was drawn

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

Yes More
processes?

Event

25

Workflow of a Simulation

• Draw more samples (=compute more
events) until 𝑁 is reached

• Sometimes, all steps needed to obtain 𝑁
samples is referred to as one run

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

More
processes?

Enough
events?

Yes

No

Run

26

Questions?

27

Programming Environment
Linux; Terminal; Visual Studio Code; Git; CMake; Geant4

28

Programming Environment

• For the hand-ons examples, we will
use the MC simulation framework
“Geant4”

• It is best to run it under Linux

• You will interact with Linux mostly
via text commands, entered in a
terminal window – it’s a “Text User
Interface” (TUI)

29

Linux

• For the actual programming, there are
also integrated development
environments (IDE) which provide many
benefits:
• syntax highlighting
• code completion
• etc.

• We will use
Microsoft Visual Studio Code (VSC)
https://code.visualstudio.com/

• Other common IDEs are, e.g.
• eclipse

https://projects.eclipse.org/projects/tools.c
dt

• CLion
https://www.jetbrains.com/de-de/clion/

30

https://code.visualstudio.com/
https://projects.eclipse.org/projects/tools.cdt
https://www.jetbrains.com/de-de/clion/

Git

• Git is a code repository, it allows a
user to track the changes made to a
set of file over time

• We will use it for the files with the
source code for the hands-on
examples: ~/G4minWE

• Via so-called commits the user can
ask Git to make snapshots of the files
within the repository

• Each commit is identified by its hash

• One can go to other commits (e.g.
earlier ones) without losing the
current state via the checkout
command

31

1. commit: add a new file

2. commit: add another file

3. commit: change first file

Git

• The hands-on examples follow a
bottom-up approach: each
example is an extension of the
previous one

• The examples-repository provides
branches that contain the “extra
code” needed to go from one
examples to the next: stage_0,
stage_1, etc.

• Branches with prefix “remotes” are
not yet copied from remote
repository

32

Git

• Use checkout command to change
to a branch

• We will use “stage_0” for the very
first hands-on

• For latter hands-on we will use
“stage_4”

33

CMake

• To manage the compilation of the simulation
code, we will use CMake:
https://cmake.org/
• Depending on the provide CMakeLists.txt file

CMake will determine the dependencies between
the different parts of the code and generate a
build script – called configuring the project

• Depending on this build script, it will then call the
compiler to compile the source code to object
files and call the linker to link the object files
together to the executable – called building the
project

• As actual compiler we will use the GNU Compiler
Collection – but thanks to CMake we do not
interact directly with it

34

https://cmake.org/

CMake

• CMake uses 3 directories:
• One that contains the source code of the

program to be build, e.g. the local copy of a
repository

• The build directory where Cmake creates the
build script, runs the compiler, etc.

• The install directory where the compiled
executable will be copied to

• This way, build artefacts (=temporary files
needed during building) will not “pollute”
the source files and after installing one can
simply delete the build directory with all its
temporary files

35

CMake

• The cmake command configure a project
• One can specify the install directory via the

option –DCMAKE_INSTALL_PREFIX

• The argument to cmake is the source directory

• It’s necessary if one adds or removes source code
files from a project

• In the pre-installed VSC, you can configure your
project by pressing the [F8] key

36

CMake

• Once the build script is generate,
cmake --build start the actual building
• The –target install option tells cmake to copy the

built files to the install directory

• If one has more CPU cores available, one can
assign n of them to the build process via the -jn
option

• In the pre-installed VSC, you can compile your
project by pressing the [F7] key

• And install it by pressing the [F9] key

37

Geant4

• Geant4 is freely available from
CERN: https://geant4.web.cern.ch/

• Most current version is 11.2.1,
we will use 10.6.3

• Manuals:
https://geant4.web.cern.ch/docs/
especially the Book For Application
Developer (BAD)

• API documentation:
https://geant4.kek.jp/Reference/
https://geant4.kek.jp/LXR/

38

https://geant4.web.cern.ch/
https://geant4.web.cern.ch/docs/
https://geant4.kek.jp/Reference/
https://geant4.kek.jp/LXR/

Hands-on

• Change to the source directory under your home directory:
cd ~/G4minWE

• Checkout the „stage_0“ branch:
git checkout stage_0

• Change to the „build“ directory, configure and build the program via the
command line:
cd ../build
cmake -DCMAKE_INSTALL_PREFIX=../install ../G4minWE
cmake --build . --target install -j2

• Change to the “install” directory and run G4minWE
cd ../install
./bin/G4minWE

39

Hands-on

• Change to the source directory under your home directory:
cd ~/G4minWE

• Checkout the „stage_0“ branch:
git checkout stage_0

• Change to the „build“ directory, configure and build the program via the
command line:
cd ../build
cmake -DCMAKE_INSTALL_PREFIX=../install ../G4minWE
cmake --build . --target install -j2

• Change to the “install” directory and run G4minWE
cd ../install
./bin/G4minWE

40

Basics of Geant4
Basic Structure; Visualisation; Macro Files

41

Geant4

• The user interacts with the
Geant4 framework via the main()
function
• Geometry model, physics list,

primary particle generation are
specified in classes the user
derived from Geant4 base classes

• Some features are provided as
ready-to-use, e.g. visualisation

• In the main function, instances of
these user defined classes are
passed to the manager classes
provided by Geant4

42

Physics List

• The physics list has to be
• Instantiated in the main()

function
• Registered to the G4RunManger
• And must not be deleted

• Geant4 provides several pre-
defined physics lists tuned for
several use cases, see Guide for
Physics Lists

• In our examples, we use
Shielding

43

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html

Physics List

• Geant4 offers the users flexibility
which kind of physics to apply in
the simulation via physics lists
[BAD §6.2.2]
• List of physics processes that are

applicable for a particle
• A physics process is a combination

of physics model and cross
sections

• Physics models give the final state
of the reaction products, including
any secondary particles

44

Visualisation

• Geant4 can visualize the
implemented geometry (and the
particle interaction happening
within)

• To enable visualisation, the
visualisation manager has to be
instantiated in the main function

• Depending on the way Geant4 as
installed, several visualisation
drivers are available [BAD, §8.1.2]

• User can configure it via macro
files

45

Macro Files

• Geant4 can be controlled via
macro files (file extension: mac)

46

Macro Files

• Geant4 can be controlled via
macro files

• Pass a macro file either on the
command line for batch mode

47

Macro Files

• Geant4 can be controlled via
macro files

• Pass a macro file either on the
command line for batch mode

• Or select it in an interactive GUI
(via the „open file“ icon)

• If you want to simulate large
numbers of events, use batch
mode; use GUI only for test or
debugging purposes

48

Visualisation

• Control the visualisation settings
via macro file commands
• Before the geometry can be

visualised, Geant4 need to be
initialised

• Select the visualization driver
• OGL for interactive visualisation
• HepRepXML / JAS3 for offline use

• Draw the geometry
• Configure the visualisation style,

add axes cross, orient the point of
view, etc.
see list of all commands

49

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Control/AllResources/Control/UIcommands/_vis_.html

Interactive Visualisation

• In G4minWE, by default OpenGL
is used a visualisation driver
• It is interactive: one can pan and

rotate the scene via mouse
• Zoom in and out
• Switch on/off individual volumes

via the scene tree
• Macro file vis.mac from stage_1 of

G4minWE onwards adds an axes
cross to the small PMMA (=Acrylic
glass) cube defined in
DetectorConstruction

50

Offline Visualisation

• One can also create an
HepRepXML file that contains a
description of the geometry
→ adapt vis.mac as shown on
the screen shot

51

Offline Visualisation

• The JAS3 tool can visualise the
geometry described in a
HepRepXML file

• The default name of the
HepRepXML file is
scene-0.heprep.zip

52

Offline Visualisation

• jas3 ./scene-0.heprep.zip

• Open a Wire4 view via:
“File > New > Wired4 View”

• If there is no „Wired4 View“ go
to “View > Plugin Manager >
Available > common”
select „WIRE4“ and click „Install
selected plugins“

• Click the „play“ button to start
visualisation

53

Hands-on

• Change to the source directory and checkout the „stage_4“ branch:
cd ~/G4minWE
git checkout stage_4

• Configure, build and install the code via VSC:
In VSC, press the [F8], [F7], [F9] keys

• Change to the install directory and run ./mac/vis.mac via the GUI
cd ../install
./bin/G4minWE
In the GUI click “File open” icon, select ./mac/vis.mac

• Use VSC to activate the JAS3 visualisation in ./mac/vis.mac, install it
Comment out line 21, uncomment lines 25,46, press [F9]

• Run ./mac/vis.mac in batch mode and open the output file in JAS3
./bin/G4minWE ./mac/vis.mac
jas3 scene-0.heprep.zip

54

Hands-on

• Change to the source directory and checkout the „stage_4“ branch:
cd ~/G4minWE
git checkout stage_4

• Configure, build and install the code via VSC:
In VSC, press the [F8], [F7], [F9] keys

• Change to the install directory and run ./mac/vis.mac via the GUI
cd ../install
./bin/G4minWE
In the GUI click “File open” icon, select ./mac/vis.mac

• Use VSC to activate the JAS3 visualisation in ./mac/vis.mac, install it
Comment line 21, uncomment lines 25,46, press [F9]

• Run ./mac/vis.mac in batch mode and open the output file in JAS3
./bin/G4minWE ./mac/vis.mac
jas3 scene-0.heprep.zip

55

Take Home Messages

• Simulations can be regarded as virtual experiments

• A background simulation depends crucially on its model assumptions

• Each simulated event is one drawn sample from the sample space –
more samples results in a more precise result

• Geant4 is a free and widely used software framework to implement a
MC simulation – the scope of the simulation is the responsibility of its
developers

• Unfortunately, some tools are needed (e.g. Linux, IDEs, C++, etc.) to
create a MC simulation – like real experiments depends on tools

56

