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Scope

• Q: What will you gain from this lecture?

• A: You will get a basic understanding how to implement and run a 
Monte Carlo (MC) simulation with the Geant4 code. You should get
an understanding what MC background models of rare event searches
can do and what their limitations are.
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Schedule

• Today:
Theory of MC simulations, programming environment,
and basics of Geant4

• Friday (20 Sep., 14:00 – 15:45):
Implement experimental geometries, generate primary particles, store 
data and analyse it with ROOT

• Wednesday (25 Sep., 16:15 – 18:00):
Simulation of
• intrinsic backgrounds for deep underground experiments searching for Dark Matter

• atmospheric backgrounds for reactor based neutrino experiments at shallow 
experimental sites 
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Mode of the lecture

• The lecture will alternate between theory parts (~15min, me talking) 
and hands-on examples (~20min, you simulating)

• During the hands-on you can also discuss the problem at hand with 
your fellow student

• If you have questions – don’t hesitate to ask them at any time!
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What is your previous knowledge?
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Theory* of MC simulations
*To the extend needed to understand an actual simulation and its terminology
- not more
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Research Objectives

• Treat a MC simulation as a virtual experiment and decided before starting 
it*:
• What is the research objective? What question should the experiment 

answer?

• What is the observable? What should be (virtually) measured?

• What is known about the boundary conditions of the experiment? Are 
positions constrained by the geometry of the apparatus that should be 
simulated?

*At least in a first approximation; as with real experiments, first results may cause refinements or extension of 
the initial objectives
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Research Objectives

• Objective: What is the deflection 
angle 𝜃 of an alpha particle of 
energy E emitted in direction 𝛽
at position 𝑟0 after passing 
through a monoatomic gold 
layer with atoms at 𝑟Au,𝑖?

Au atoms

𝛼

𝛽

𝜃
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Input And Output

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Output:
• Deflection angle 𝜃

Au atoms

𝛼

𝛽

𝜃
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Primary Particle, Geometry, Observable

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Output:
• Deflection angle 𝜃

Au atoms

𝛼

𝛽

𝜃

Defines the 
primary particle

Defines the 
geometry of the
experiment

The observable
that should be
measured10



Physics Model

Au atoms

𝛼

𝛽

𝜃

• Input:
• Incident particle: alpha

• Initial energy E

• Initial direction 𝛽

• Initial position 𝑟0
• Scatterer particle: Au

• Scatterer positions 𝑟Au,𝑖

• Process: ?
(input → output)

• Output:
• Deflection angle 𝜃

Defines the 
primary particle

Defines the 
geometry of the
experiment

The observable
that should be
measured

A model of
the physical 
interactions
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Ideal Rutherford Scattering

• Process (input→ output):

Rutherford scattering

cot
𝜃

2
=
4𝜋𝜖0𝜇𝑣

2

𝑄Au ⋅ 𝑄α
⋅ 𝑏

with impact parameter

𝑏 = 𝑏 𝛽, 𝑟0, 𝑟Au ,

projectile velocity

𝑣 = 𝑣 𝐸 ,

and reduced mass

𝜇 = 𝜇 𝑚Au, 𝑚α

computable from inputs

Au atoms

𝛼

𝛽

𝜃

b
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Ideal Rutherford Scattering

• Process (input→ output):

𝜃 = 𝜃 𝐸, 𝛽, 𝑟0, 𝑟Au ,

• Rutherford scattering is a classic theory –
no randomness is involved

• In an ideal world (perfect preparation of 
incident particle, perfect knowledge of 
scatterer), repetitions of the experiment 
will yield same results

Au atoms

𝛼

𝛽

𝜃

b
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Ideal Real Rutherford Scattering

• Process (input → output):

𝜃 = 𝜃 𝐸, 𝛽, 𝑟0, 𝑟Au ,

• In reality, there are uncertainties:
• No particle can be perfectly prepared 

(𝐸, 𝛽, 𝑟0)

• No perfect knowledge about scatterer 
(𝑏(𝑟Au))

→Repetition of the experiment will yield 
different results

→Randomness!

Au atoms

𝛼

𝛽

𝜃

b
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Randomness

• Assume that the input variables are the 
components of a random vector

𝑋 = 𝐸, 𝛽, 𝑟0, 𝑟Au
with dimension 𝑛 = 4, …

• With all possible realisations Ԧ𝑥 that 𝑋 can 
take are given by the sample space Ω:
Ԧ𝑥 ∈ Ω, …

• And the probability density function (pdf) 
to realize an actual Ԧ𝑥 is 𝑃( Ԧ𝑥), …

• In physics, with cross section 𝜎: 𝑃 Ԧ𝑥 ∝ 𝜎 Ԧ𝑥

Au atoms

𝛼

𝛽

𝜃

b
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Expectation Value

• Then also the output Θ(𝑋) is a random 
variable with realisation 𝜃

• And we can use the expectation value

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

to consider the randomness of the 
searched for output

Au atoms

𝛼

𝛽

𝜃

b
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Disadvantages

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

• But it has some potential disadvantages:

• Already this simple experiment requires a 4-
dimensional integration

• Dimensionality increase rapidly with more 
realistic modelling of the experiment

• Ω (and 𝑃( Ԧ𝑥) ) can be very complex, e.g. if r0
is constrained by some complex source 
geometry

Au atoms

𝛼

𝛽

𝜃

b
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Monte Carlo Simulation

Monte Carlo Simulation: draw 𝑁 samples 

Ԧ𝑥𝑖 𝑖=0
𝑁 from Ω and approximate

𝐸 Θ = න
Ԧ𝑥∈Ω

𝑃 Ԧ𝑥 ⋅ 𝜃 Ԧ𝑥 d𝑛𝑥

with the estimator of the expectation value

෠𝐸 Θ =
1

𝑁
෍

𝑖=0

𝑁

𝜃 Ԧ𝑥𝑖

→ Solve the integral via
Monte Carlo integration

𝛼

𝑖 = 0

Ԧ𝑥0 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,0
𝜃0 = 𝜃( Ԧ𝑥0)

𝛼

𝛼

𝛼

𝑖 = 1

Ԧ𝑥1 = 𝐸0, 𝛽1, 𝑟0, 𝑟Au,0
𝜃1 = 𝜃( Ԧ𝑥1)

𝑖 = 2

Ԧ𝑥2 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,2
𝜃2 = 𝜃( Ԧ𝑥2)

𝑖 = 3

Ԧ𝑥3 = 𝐸3, 𝛽0, 𝑟0, 𝑟Au,0
𝜃3 = 𝜃( Ԧ𝑥3)
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Advantanges

• Due to the Law of Large Numbers
lim
𝑁→∞

෠𝐸 Θ = 𝐸 Θ

accuracy can get arbitrary good

• Compared to numerical integration, e.g. 
trapezoidal rule, MC integration is fast:
Improve accuracy for d-dimensional 
integral like

• 1/𝑛2/𝑑 for trapezoidal rule with n points

• 1/𝑛1/2 for MC integration with n samples:

→ for d>4, MC integration is faster

𝛼

𝑖 = 0

Ԧ𝑥0 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,0
𝜃0 = 𝜃( Ԧ𝑥0)

𝛼

𝛼

𝛼

𝑖 = 1

Ԧ𝑥1 = 𝐸0, 𝛽1, 𝑟0, 𝑟Au,0
𝜃1 = 𝜃( Ԧ𝑥1)

𝑖 = 2

Ԧ𝑥2 = 𝐸0, 𝛽0, 𝑟0, 𝑟Au,2
𝜃2 = 𝜃( Ԧ𝑥2)

𝑖 = 3

Ԧ𝑥3 = 𝐸3, 𝛽0, 𝑟0, 𝑟Au,0
𝜃3 = 𝜃( Ԧ𝑥3)
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Samples as Particle Trajectories

As particle physics simulation can be 
considered virtual experiments, the 
samples have a clear interpretation:

→They describe the trajectory (=track) a 
particle using the sampled values as input 
variables would follow within the given 
physics model

→Like in real experiments, one can 
“measure” more than one observable, e.g. 
also energy loss Δ𝐸:

the output is then a tuple 𝜃 → Ԧ𝜃 = (𝜃, Δ𝐸)

Au atoms
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Workflow of a Simulation
• Setup the virtual experiment:

• Initialize the geometry model: which materials 
are placed at which regions or positions?

• Initialize the physics model: compute material 
dependent model parameters (based on the 
geometry model)

• Decide how many samples 𝑁should be drawn

Initialise physics model 
and geometry model

21



Workflow of a Simulation
• Use a primary particle generator to 

sample the random variables that define 
the primary particle

• Initial direction

• Initial position (considering constrains from 
the geometry model, e.g. if primary particles 
can only be created within a source region)

• Kinetic energy

• Particle type

Initialise physics model 
and geometry model

Create primary particle
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Workflow of a Simulation
• Start the track of the primary particle

• Based on the physics model, compute the  
mean free path 𝜆, i.e. average distant 
between two interactions

• Move the particle along the track by 𝜆,
make one step

• Compute the interaction, if needed 
sample input parameters, apply resulting 
changes on the track, e.g. changing 
direction due to deflection, reduce kinetic 
energy due to energy loss

• Update the observable(s) (e.g. deflection 
angle, energy loss) accordingly

Initialise physics model 
and geometry model

Create primary particle

Propagate particle 
through geometry

Apply physics processes

Compute observable

Step
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Workflow of a Simulation
• Are there more processes that can apply 

to the particle?

• If yes (e.g. multiple scattering in a finite 
volume), repeat the previous step

• “No” could mean

• The particle is unstable, and ceased to exist

• The particle moved out of the finite 
geometrical model

• The user deliberately limited the amount of 
iterations due to time or computing costs

• If no, then the track is finished
→ one sample Ԧ𝑥 from the total sample 
space Ω was drawn

→ observable Ԧ𝜃( Ԧ𝑥) was computed

Initialise physics model 
and geometry model

Create primary particle

Propagate particle 
through geometry

Apply physics processes

Compute observable

Yes More 
processes?
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Workflow of a Simulation
• All steps from creating the primary 

particle until ending the track are some 
times referred to as an event

• Within one event, one sample from the 
total sample space Ω was drawn

Initialise physics model 
and geometry model

Create primary particle

Propagate particle 
through geometry

Apply physics processes

Compute observable

Yes More 
processes?

Event
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Workflow of a Simulation

• Draw more samples (=compute more 
events) until 𝑁 is reached

• Sometimes, all steps needed to obtain 𝑁
samples is referred to as one run

Initialise physics model 
and geometry model

Create primary particle

Propagate particle 
through geometry

Apply physics processes

Compute observable

More 
processes?

Enough 
events?

Yes

No

Run
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Questions?
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Programming Environment
Linux; Terminal; Visual Studio Code; Git; CMake; Geant4
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Programming Environment

• For the hand-ons examples, we will 
use the MC simulation framework 
“Geant4”

• It is best to run it under Linux

• You will interact with Linux mostly 
via text commands, entered in a 
terminal window – it’s a “Text User 
Interface” (TUI)
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Linux

• For the actual programming, there are 
also integrated development 
environments (IDE) which provide many 
benefits:
• syntax highlighting
• code completion
• etc.

• We will use
Microsoft Visual Studio Code (VSC)
https://code.visualstudio.com/

• Other common IDEs are, e.g.
• eclipse

https://projects.eclipse.org/projects/tools.c
dt

• CLion
https://www.jetbrains.com/de-de/clion/

30
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Git

• Git is a code repository, it allows a 
user to track the changes made to a 
set of file over time

• We will use it for the files with the 
source code for the hands-on 
examples: ~/G4minWE

• Via so-called commits the user can 
ask Git to make snapshots of the  files 
within the repository

• Each commit is identified by its hash

• One can go to other commits (e.g. 
earlier ones) without losing the 
current state via the checkout 
command

31

1. commit: add a new file

2. commit: add another file

3. commit: change first file



Git

• The hands-on examples follow a 
bottom-up approach: each 
example is an extension of the 
previous one

• The examples-repository provides 
branches that contain the “extra 
code” needed to go from one 
examples to the next: stage_0, 
stage_1, etc.

• Branches with prefix “remotes” are 
not yet copied from remote 
repository
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Git

• Use checkout command to change 
to a branch

• We will use “stage_0” for the very 
first hands-on

• For latter hands-on we will use 
“stage_4”
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CMake

• To manage the compilation of the simulation 
code, we will use CMake:
https://cmake.org/
• Depending on the provide CMakeLists.txt file 

CMake will determine the dependencies between 
the different parts of the code and generate a 
build script – called configuring the project

• Depending on this build script, it will then call the 
compiler to compile the source code to object 
files and call the linker to link the object files 
together to the executable – called building the 
project

• As actual compiler we will use the GNU Compiler 
Collection – but thanks to CMake we do not 
interact directly with it 

34
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CMake

• CMake uses 3 directories:
• One that contains the source code of the 

program to be build, e.g. the local copy of a 
repository

• The build directory where Cmake creates the 
build script, runs the compiler, etc.

• The install directory where the compiled 
executable will be copied to

• This way, build artefacts (=temporary files 
needed during building) will not “pollute” 
the source files and after installing one can 
simply delete the build directory with all its 
temporary files
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CMake

• The cmake command configure a project
• One can specify the install directory via the 

option –DCMAKE_INSTALL_PREFIX 

• The argument to cmake is the source directory

• It’s necessary if one adds or removes source code 
files from a project

• In the pre-installed VSC, you can configure your 
project by pressing the [F8] key
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CMake

• Once the build script is generate,
cmake --build start the actual building
• The –target install option tells cmake to copy the 

built files to the install directory

• If one has more CPU cores available, one can 
assign n of them to the build process via the -jn
option

• In the pre-installed VSC, you can compile your 
project by pressing the [F7] key

• And install it by pressing the [F9] key
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Geant4

• Geant4 is freely available from 
CERN: https://geant4.web.cern.ch/

• Most current version is 11.2.1, 
we will use 10.6.3

• Manuals:
https://geant4.web.cern.ch/docs/
especially the Book For Application 
Developer (BAD)

• API documentation:
https://geant4.kek.jp/Reference/
https://geant4.kek.jp/LXR/

38
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Hands-on

• Change to the source directory under your home directory:
cd ~/G4minWE

• Checkout the „stage_0“ branch:
git checkout stage_0

• Change to the „build“ directory, configure and build the program via the 
command line:
cd ../build
cmake -DCMAKE_INSTALL_PREFIX=../install ../G4minWE
cmake --build . --target install -j2

• Change to the “install” directory and run G4minWE
cd ../install
./bin/G4minWE
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Hands-on

• Change to the source directory under your home directory:
cd ~/G4minWE

• Checkout the „stage_0“ branch:
git checkout stage_0

• Change to the „build“ directory, configure and build the program via the 
command line:
cd ../build
cmake -DCMAKE_INSTALL_PREFIX=../install ../G4minWE
cmake --build . --target install -j2

• Change to the “install” directory and run G4minWE
cd ../install
./bin/G4minWE
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Basics of Geant4
Basic Structure; Visualisation; Macro Files
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Geant4

• The user interacts with the 
Geant4 framework via the main()
function
• Geometry model, physics list, 

primary particle generation are 
specified in classes the user 
derived from Geant4 base classes

• Some features are provided as 
ready-to-use, e.g. visualisation

• In the main function, instances of 
these user defined classes are 
passed to the manager classes
provided by Geant4
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Physics List

• The physics list has to be
• Instantiated in the main()

function
• Registered to the G4RunManger
• And must not be deleted

• Geant4 provides several pre-
defined physics lists tuned for 
several use cases, see Guide for 
Physics Lists

• In our examples, we use 
Shielding
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Physics List

• Geant4 offers the users flexibility 
which kind of physics to apply in 
the simulation via physics lists 
[BAD §6.2.2]
• List of physics processes that are 

applicable for a particle
• A physics process is a combination 

of physics model and cross 
sections

• Physics models give the final state 
of the reaction products, including 
any secondary particles
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Visualisation

• Geant4 can visualize the 
implemented geometry (and the 
particle interaction happening 
within)

• To enable visualisation, the 
visualisation manager has to be 
instantiated in the main function

• Depending on the way Geant4 as 
installed, several visualisation 
drivers are available [BAD, §8.1.2]

• User can configure it via macro 
files
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Macro Files

• Geant4 can be controlled via 
macro files (file extension: mac)
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Macro Files

• Geant4 can be controlled via 
macro files

• Pass a macro file either on the 
command line for batch mode
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Macro Files

• Geant4 can be controlled via 
macro files

• Pass a macro file either on the 
command line for batch mode

• Or select it in an interactive GUI 
(via the „open file“ icon)

• If you want to simulate large 
numbers of events, use batch 
mode; use GUI only for test or 
debugging purposes
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Visualisation

• Control the visualisation settings 
via macro file commands
• Before the geometry can be 

visualised, Geant4 need to be 
initialised

• Select the visualization driver
• OGL for interactive visualisation
• HepRepXML / JAS3 for offline use

• Draw the geometry
• Configure the visualisation style, 

add axes cross, orient the point of 
view, etc.
see list of all commands
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Interactive Visualisation

• In G4minWE, by default OpenGL
is used a visualisation driver
• It is interactive: one can pan and 

rotate the scene via mouse
• Zoom in and out
• Switch on/off individual volumes 

via the scene tree
• Macro file vis.mac from stage_1 of 

G4minWE onwards adds an axes 
cross to the small PMMA (=Acrylic 
glass) cube defined in 
DetectorConstruction
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Offline Visualisation

• One can also create an 
HepRepXML file that contains a 
description of the geometry
→ adapt vis.mac as shown on 
the screen shot
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Offline Visualisation

• The JAS3 tool can visualise the 
geometry described in a 
HepRepXML file

• The default name of the 
HepRepXML file is 
scene-0.heprep.zip
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Offline Visualisation

• jas3 ./scene-0.heprep.zip

• Open a Wire4 view via:
“File > New > Wired4 View”

• If there is no „Wired4 View“ go 
to “View > Plugin Manager > 
Available > common”
select „WIRE4“ and click „Install 
selected plugins“

• Click the „play“ button to start 
visualisation
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Hands-on

• Change to the source directory and checkout the „stage_4“ branch:
cd ~/G4minWE
git checkout stage_4

• Configure, build and install the code via VSC:
In VSC, press the [F8], [F7], [F9] keys

• Change to the install directory and run ./mac/vis.mac via the GUI
cd ../install
./bin/G4minWE
In the GUI click “File open” icon, select ./mac/vis.mac

• Use VSC to activate the JAS3 visualisation in ./mac/vis.mac, install it
Comment out line 21, uncomment lines 25,46, press [F9]

• Run ./mac/vis.mac in batch mode and open the output file in JAS3
./bin/G4minWE ./mac/vis.mac
jas3 scene-0.heprep.zip
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Hands-on
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Take Home Messages

• Simulations can be regarded as virtual experiments

• A background simulation depends crucially on its model assumptions

• Each simulated event is one drawn sample from the sample space –
more samples results in a more precise result

• Geant4 is a free and widely used software framework to implement a 
MC simulation – the scope of the simulation is the responsibility of its 
developers

• Unfortunately, some tools are needed (e.g. Linux, IDEs, C++, etc.) to 
create a MC simulation – like real experiments depends on tools
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