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Geometry
DetectorConstruction; Solid Volumes; Logical Volumes; Material Definition; Physical 
Placement
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DetectorConstruction

• In Geant4, the user has to derive
a concrete subclass from the 
abstract base class 
G4VUserDetectorConstruction and 
implement the method
Construct()

• Geant4 calls this method to get a 
G4VPhysicalVolume* that 
represent the geometry of the 
experiment one wants to 
simulate
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DetectorConstruction

• In the main function, a pointer 
to an instance of 
DetectorConstriction has to be 
passed to Geant4’s G4RunManager
via its SetUserInitialization
method
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Aspects of geometry

• In Geant4, the geometric model 
of a virtual experiments consists 
of one or several volumes

• For each volume, Geant4 
considered 3 aspects
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• The shape and dimensions of the 

volume is represent by a solid 
volume

6



Aspects of geometry

• For each volume, Geant4 
considered 3 aspects:
• The shape and dimensions of the 

volume is represent by a solid 
volume

• It is linked to a material via the 
logical volume

7



Aspects of geometry

• For each volume, Geant4 
considered 3 aspects:
• The shape and dimensions of the 

volume is represent by a solid 
volume

• It is linked to a material via the 
logical volume

• It is placed relative to an enclosing 
mother volume via physical 
volume
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Solid Volumes

• Geant4 provides a set of 
geometric primitives, the 
Constructed Solid Geometry 
(CSG) solids, see [BAD, §4.1.2]

• For example, for a cuboid 
volume use G4Box

• It need the half-length of the 
cuboid

• Geant4 understands physical 
units (e.g. mm, cm, kg, etc.)
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Logical Volumes

• Via a G4LogicalVolume, a solid 
volume is linked to a G4Material
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Material Definition

• A G4Material can be either 
manually defined or retrieve 
from the G4NistManager
• Based on data from the National 

Institute of Standard And 
Technology (NIST) of the US 
government

• Available materials are listed in 
[BAD, §11.6]
→ in this lecture we will use these 
predefined materials
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Physical Placements

• A G4VPhysicalVolume can be 
created from a logical volume via 
G4PVPlacement constructor

• Geant4 keeps track of volume 
objects and delete them a the end 
of a run
→ Do not delete them in e.g. the 
destructor

• During development/debugging it 
is useful to set checkOverlap=true
→ checks if volumes which are not 
mother/daughter occupy the same 
space
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Nested Volumes

• A volume is placed and rotated 
relative to its enclosing mother 
volume
→ hierarchy of nested volumes

• Outermost volume, i.e. those 
without a mother volume, is the 
world volume

• Construct has to return a pointer 
to this world volume
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Nested Volumes

• A volume is placed and rotated 
relative to its enclosing mother 
volume
→ hierarchy of nested volumes

• For example: to model an air-
filled iron box, place a smaller, 
air-filled G4Box as daughter 
volume inside a bigger, iron-
filled G4Box as mother volume
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Translation and Rotation

G4ThreeVector myTrans = 

G4ThreeVector(

1.*mm,

-10.3*m,

3.33*cm

);

G4RotationMatrix *myRot = new 

G4RotationMatrix();

new G4PVPlacement(myRot, 

myTrans, “myName”, …);

• The translation of a daughter 
volume relative to its mother 
volume is specified via a 
G4ThreeVector object
• Default value is (0, 0, 0)

• The rotation is given via a 
instance of G4RotationMatrix
• Do not delete the matrix after you 

pass it to the G4PVPlacement

• Delete it in the destructor of 
DetectorConstruction
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Rotation

G4RotationMatrix *myRot = new 

G4RotationMatrix();

myRot->rotateY(90.*degree)

new G4PVPlacement(myRot, 

myTrans, “myName”, …);

• G4RotationMatrix is a typedef to 
CLHEP::HepRotation

• User can define a rotation in 
various ways, see the API 
documentation

• For example: by default the 
height of a G4Tubs is aligned to 
the z-axis, to place it „on the 
side“ parallel to the x-axis, one 
can use rotateY(90.*degree)
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https://geant4.kek.jp/Reference/10.06.p03/classCLHEP_1_1HepRotation.html


Translation

• Translation t is given relative to the centres of mother and daughter volumes

• By default, the daughter volume is centred with respect to the mother volume
t = G4ThreeVector(0., 0., 0.)
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Hands-on

• Open ./src/detectorConstruction.cc in VSC and
• Change the „PMMA cube“ (lines 78-104) to a cube of

• 10 cm edge length (caution: G4Box takes half edge length as argument)
• Made of „G4_Ge“ from the NIST material manager

• Nest „cube“ as daughter volume within a new G4Box with
• 20 cm edge length
• Made of „G4_Galactic“ from the NIST material manager
• Named „vac“
• „cube“ is placed at the centre (0,0,0) of „vac“

• Nest „vac“ as daughter volume within a new G4Box with
• 22 cm edge length
• Made of „G4_Cu“ from the NIST material manager
• Named „shell“
• „vac“ is placed at the centre of „shell“
• „shell“ is placed at the centre of „world“ (which already exist)

• Use the modified ./mac/vis.mac from previous hands-on to visualise the setup with JAS3
• Check that the visualized geometry is correct
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Hands-on
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cube / G4_Ge

vac / G4_Galactic

shell / G4_Cu



Primary Particle Generation
G4VUserPrimaryGeneratorAction; G4VPrimaryGenerator; G4GeneralParticleSource
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Class Diagram

• The Geant4 class that implement 
the generation of a primary 
particle is the primary particle 
generator 

• It is derived from the abstract 
base class G4VPrimaryGenerator

• It has to implement the method 
void 

GeneratePrimaryVertex(G4Event* 

anEvent)
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Class Diagram

• The generator is instantiate by 
the primary generator action

• It is derived from the abstract 
base class 
G4VUserPrimaryGeneratorActio

n

• It has to implement the method 
void GeneratePrimaries(G4Event* 

anEvent)
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G4VUserPrimaryGeneratorAction

• The primary generator action 
can be instantiate via a 
dedicated G4UserAction 
Initialization class which 
will handle the registering with 
G4RunManager
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G4VUserPrimaryGeneratorAction

• The class itself can be very simple: 
it just has to instantiate the 
primary particle generator 

• Geant4 provides some predefined 
primary particle generators:
• G4ParticleGun – to model a vertex 

with fixed properties
→ Example in G4minWE

• G4GeneralParticleSource (GPS) –
can also model more complex 
scenarios (primary particle 
homogeneously distributed in a given 
volume)
→We’ll use it in the hands-on
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G4GeneralParticleSource

• For the G4GeneralParticleSource, 
the user has to provide very little 
code, but …

• It is very flexible

• It is controllable via macro 
commands
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G4GeneralParticleSource

• First, need to initialize Geant4
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/run/initialize



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated
• Either elementary particle
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/run/initialize

/gps/particle e-



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated
• Either elementary particle

• Or ion AZX, e.g. 31H
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/run/initialize

/gps/particle ion

/gps/ion 1 3



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated

• Kinetic energy at start
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/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated

• Kinetic energy at start

• Position of source (3D vector 
with units)
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/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated

• Kinetic energy at start

• Position at start

• Direction at start (3D vector 
without units, does not need to 
be a unit vector)
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/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm

/gps/direction 1 2 3



G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be 
generated

• Kinetic energy at start

• Position at start

• Direction at start

• Start simulation with 2 events
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/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm

/gps/direction 1 2 3

/run/beam 2



G4GeneralParticleSource

• Can be more complex, e.g.
• Define a cube (=parallelepiped 

with all angles set to 0)

• With 1 cm edge length

• At position (0, 0, 0) mm

• Filled with 31H ions

• That is confined to the volume 
“cube”

• And directions that are isotropic 
distributed

• Full list of GPS commands
33

/run/initialize

/gps/pos/type Volume

/gps/pos/shape Para

/gps/pos/halfx 1. cm

/gps/pos/halfy 1. cm

/gps/pos/halfz 1. cm

/gps/pos/paralp 0

/gps/pos/parthe 0

/gps/pos/parphi 0

/gps/pos/centre 0. 0. 0. mm

/gps/confine cube

/gps/particle ion

/gps/ion 1 3

/gps/ang/type iso

/run/beam 2

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V11.0/html/Control/AllResources/Control/UIcommands/_gps_.html


Time Normalisation

• As each simulated event is 
independent from each other, 
the simulation has no intrinsic 
time scale, i.e. does not “know” 
how much time is passed 
between the events

➔“ How long” does the virtual 
experiment run?
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Time Normalisation

• We need to normalize the amount of 
simulated events to a known rate, 
e.g.
• We model the measurement of a 60Co 

source with a HPGe detector

• We simulate N0=1e6 events, each starts 
with a 60Co decay

• The source has an activity of A=100 kBq
(1 Bq = 1 decay per second)

➔ In reality, our experiment would
have run for 10 s
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• 𝑁0 = 106; 𝐴 = 100 kBq

𝑇 =
𝑁0
𝐴

=
106

100 kBq

=
106

100 ⋅ 103 s−1

= 10 s



Time Normalisation

• In the simulation, in N=1e4 events 
an energy above the detection 
threshold was deposited in the HPGe 
detector
• Detection efficiency N/N0=1%

• What count rate R would this 
correspond to?

➔ In reality, the HPGe would have a 
count rate of R=103 s-1*
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• 𝑁 = 104; 𝑇 = 10 s

𝑅 =
𝑁

𝑇

= 103 s−1

=
𝑁

𝑁0
⋅ 𝐴

*Proper unit is s-1, not Hz; albeit the dimensions are the same, Hz is used for periodic events



Hands-on

• Open ./src/primaryParticleAction.cc and the corresponding header 
file in VSC

• Change the primary particle generator from „G4ParticleGun“ to 
„G4GeneralParticleSource“

• Modify ./mac/vis_run.mac
• To use JAS3 for visualisation

• Use GPS to place 71Ge inside the „cube“ volume

• Simulate 20 events

• Open the scene-0.heprep.zip file in JAS3: what could the green lines 
be?
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Hands-on
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run_vis.mac



Particle Tracking & Data Storage
User Action Classes; Run; Event; ROOT

39



ROOT

• ROOT is a data analysis framework 
developed by CERN and widely 
used with (high energy) particle 
physics experiments
→ that’s why we will use it

• It’s open source: 
https://root.cern.ch
(we will use version 6.22)

• Well documented: 
https://root.cern/doc/v622

• Generally, data can also be 
analysed with R, python, Mathlab, 
etc.
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https://root.cern.ch/
https://root.cern/doc/v622


Reminder From Lecture 1

• Run: all samples drawn within 
this particular simulation

• Event: one drawn sample

• Track: trajectory of one particle 
(there may be several in one 
event)

• Step: move the particle along 
the minimal mean free path 
along its track
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Initialise physics model 
and geometry model

Create primary particle

Propagate particle 
through geometry

Apply physics processes

Compute observable

More 
processes?

Enough 
events?

Yes

No

RunEventStep



User Action Classes

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

• Geant4 offers 5 optional User 
Action classes [BAD §6.3]

• Deviating these classes, users 
can
• Modify the simulation

• Collect data 

• At run/event/track/step level
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User Action Classes

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

• Geant4 offers 5 optional User 
Action classes [BAD §6.3]

• Deviating these classes, users 
can
• Modify the simulation

• Collect data

• At run/event/track/step level
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Register User Action Classes

• Like the PrimaryParticleAction, 
the UserAction are instantiate 
via a the G4UserAction 
Initialization which will 
handle the registering with 
G4RunManager
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G4UserRunAction

• Geant4 provide fully 
implemented User Run Action 
class
→ one doesn’t have to 
implement it

• But if one provide a deviated 
subclass, one can customize 
many aspects of Geant4’s 
handling of a run
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G4UserRunAction

• For example: by overriding the 
BeginOfRunAction and 
EndOfRunAction methods, one 
can executed code before a run 
starts and after it’s finished

• This way, one could open and 
close an output files to store the 
simulated data
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G4AnalysisManager

• Geant4 provides predefined 
manager classes [BAD §9.2] to 
handle data storage as
• CSV

• HDF5

• XML

• ROOT

• For example, use it to open a 
ROOT output file in the Run 
Action
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G4AnalysisManager

• Geant4 provides predefined 
manager classes [BAD §9.2] to 
handle data storage as
• CSV

• HDF5

• XML

• ROOT

• For example, use it to open a 
ROOT output file in the Run 
Action
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ROOT File Structure

• In the simplest case, a ROOT file 
structured data sets using a 
“Table” metaphor:
• Table ~ N-tuple ~ Tree
• columns (of a given data type like 

int, double, …)
• Entries ~ rows

• In addition, a ROOT file can also 
contain histograms of various 
dimensions and precisions, e.g. 
TH1D type → 1 dimensional with 
double precision
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G4UserEventAction

• Similarly, deviating a subclass from 
G4UserEventAction allows the 
customisation of how Geant4 
handles events

• For example, by overriding the 
BeginOfEventAction and 
EndOfEventAction methods, one 
can executed code before an event 
starts and after it’s finished

• This way, one can perform simple 
analysis tasks, e.g. extract data 
from a sensitive detector
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Sensitive Detector

• To simulate a particle detector
and the hits detected by it, 
Geant4 provides the abstract 
base classes 
G4VSensitiveDetector and 
G4VHit, respectively [BAD §4.4]

• The user can deviate a concrete 
Sensitive Detector (SD) and hit 
classes from it
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Sensitive Detector

• One can attach a SD object to a 
logical volume in 
G4VUserDetectorConstructio

n::ConstructSDandField()

• Besides user defined SDs, 
Geant4 provides also general 
purpose SDs: 
G4MultiFunctionalDetector

and G4VPrimitiveScorer 
[BAD § 4.4.4]
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Sensitive Detector

• At the start of each event, the 
SDs are initialized:
• Each SD initializes a collection to collect 

future hits = HitCollection (HC)

• Identified by the SD name and a 
collection name
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Sensitive Detector

• Each time a particle track pass 
through the associated volume, 
the ProcessHits() method of 
the SD is called

• Data can be accessed through 
the provided G4Step object
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G4Step

• A G4Step is defined as the movement 
of a G4Track between a PreStepPoint
and a PostStepPoint and allows to 
access the quantities changed during 
this move

• Especially, it allows to access
• The PreStepPoint
• The PostStepPoint
• The Track

• Allows access of deposited energy, 
position and time of hit, see 
documentation for all available data

• Default units are MeV, mm, ns [BAD 
§3.3]
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https://geant4.kek.jp/Reference/11.2.0/classG4Step.html


Sensitive Detector

• Each time a particle track pass 
through the associated volume, 
the ProcessHits() method of 
the SD is called

• Data can be accessed through 
the provided G4Step object

• And filled in Hit object

• Insert it in the HC

• How to access it, see slide 60
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Hits

• The Hit class is mostly a data 
container

• One can fill the hit object with 
the data accessible from the 
G4Step object
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Hits

• The Hit class is mostly a data 
container

• One can fill the hit object with 
the data accessible from the 
G4Step object

• For optimisation issues, Geant4 
prescribe non-standard memory 
allocation
→ Just copy’n’paste it from 
Geant4 examples and adapt 
names

58



Store Hit Data In A ROOT File

• In EventAction::EndOfEventAction
• Get the HitsCollection of the current 

event

• Get the hit collection of the SD one is 
interest in – via look-up the collection 
name

• The entries of the collection have the 
abstract base class G4VHit as type

• For the sake of convenience, cast it to 
a std::vector<Hit> of the actual 
subclass
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Store Hit Data In A ROOT File

• In EventAction::EndOfEventAction
• Loop over all entries of the vector 

to get the individual hits

• Read-out the relevant data fields 
from the hit object

• Fill the data in the relevant N-
tuple / histograms of the ROOT file

• Once all entries of the N-tuple 
(=columns) are filled, finalise the 
N-tuple (=row) by calling 
AddNtupleRow()
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ROOT Prompt

• The ROOT prompt* interprets C++ 
commands

• Open a ROOT file via 
root –l <name of file>

(-l suppress the splash screen)

• List content of file via
.ls

• List the structure of a TTree via 
TTree::Print()

• Close the ROOT prompt via
.q

• For details see Manual

61*Alternative ways to interact with ROOT are PyROOT or jupyter notebooks.

https://root.cern/manual/first_steps_with_root/
https://root.cern/manual/python/
https://nbviewer.org/url/root.cern/doc/master/notebooks/rf301_composition.C.nbconvert.ipynb


Read a ROOT File

• Open a ROOT file via 
root –l <name of file>

(-l suppress the splash screen)

• List content of file via
.ls

• List entries of column Y of tree X
X->Scan(“Y”)

• Draw histogram Z
Z->Draw()
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1-dim Histogram – Draw

• A histogram can be created in 
several ways
• TTree::Draw(<Expression>, 
<Cut>, <Options>)

• Where <Expression>
• Specifies the column that contains 

the data to be drawn, here: Edep
• May contain mathematical 

operations on this data, here: 
multiply Edep with 1000 to go from 
MeV to keV

• Can specify the type of histogram, 
here: TH1D with 50 bins between 0 
and 10

63



1-dim Histogram – Project

• A histogram can be created in 
several ways
• TTree::Draw(<Expression>, 
<Cut>, <Options>)

• TTree::Project(<Histogram 
name>, <Expression>, <Cut>, 
<Options>)

• Similar, but store the histogram data 
in an already existing histogram 
object of name <Histogram name>
→ easier to process it, e.g. modifying 
line color

• Create histogram object via, e.g.
TH1D(<Name>, <Title>, 
<NbBins>, <Min>, <Max>)
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1-dim Histogram - Normalisation

• Normalize it to bin width
• Get bin width of bin 1
TH1D::GetBinWidth(1)

• Multiply all bins with a given factor a
TH1D::Scale(a)

• → TH1D::Scale(1./
TH1D::GetBinWidht(1))

• To get an empirical Probability Density 
Function (PDF), normalize the histogram 
to unity
• Integral over the histogram
TH1D::Integral(“width”)
To get Integral=σ𝑖 𝑦𝑖 ⋅ Δx𝑖

• →TH1D::Scale(1./
TH1D::Integral(“width”))
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Hands-on

• Adapt ./mac/run.mac to the same GPS settings we used in the previous hands-on and run it for 
100 events

• Rename the produced cube.root file to cube1.root, open it in ROOT, use the Draw command to 
plot “Edep*1000” in the range [0,20], store the plot via “File > Save as”

• Open ./src/RunAction.cc in VSC and delete the DColumns “PosX”, “PosY”, and “PosZ”

• Open ./src/EventAction.cc in VSC,
• Delete the commands that previously filled the “PosX”, “PosY” and “PosZ” columns
• Move the commands the filled the “Edep” column and histogram from inside the loop (lines 53-90) to after 

the loop
• Add a double variable „sum“ that is Initialized to 0 before the loop
• Inside the loop, add „eDep“ to sum for each loop iteration 
• After the loop, fill the value of „sum“ to the column „Edep“ and the histogram

• Compile and install the program, run the same macro file as before

• Open the produced root file in ROOT and make the same analysis as before

• What differences do you observe?
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Hands-on
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Before modification After modification

Energy deposition per „hit“
~ by each e-/X-ray interaction

Energy deposition per „event“
~ by each 71Ge decay

[D.N. Abdurashitov et al., NIM B 373 (2016) 5-9]

https://doi.org/10.1016/j.nimb.2016.02.029


Take Home Messages

• An accurate simulation needs an accurate geometry
→ in principle not difficult but needs time and good spatial sense

• Before developing your own primary particle generator
→ check if the General Particle Source is sufficient

• Storing of simulated data
• Choose a file format that‘s supported by your analysis tools

• Make a deliberate decision what to store: per hit, per event, applying some 
selection criterion or not, …
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