
ISAPP School 2024 ꞏ KIT / Bad Liebenzell

GEANT4 Simulations for Rare
Event Searches

Holger Kluck ꞏ HEPHY ꞏ holger.kluck@oeaw.ac.at

2/3: Geometry, Primary Particle Generation, Particle Tracking & Data
Storage

Geometry
DetectorConstruction; Solid Volumes; Logical Volumes; Material Definition; Physical
Placement

2

DetectorConstruction

• In Geant4, the user has to derive
a concrete subclass from the
abstract base class
G4VUserDetectorConstruction and
implement the method
Construct()

• Geant4 calls this method to get a
G4VPhysicalVolume* that
represent the geometry of the
experiment one wants to
simulate

3

DetectorConstruction

• In the main function, a pointer
to an instance of
DetectorConstriction has to be
passed to Geant4’s G4RunManager
via its SetUserInitialization
method

4

Aspects of geometry

• In Geant4, the geometric model
of a virtual experiments consists
of one or several volumes

• For each volume, Geant4
considered 3 aspects

5

Aspects of geometry

• For each volume, Geant4
considered 3 aspects:
• The shape and dimensions of the

volume is represent by a solid
volume

6

Aspects of geometry

• For each volume, Geant4
considered 3 aspects:
• The shape and dimensions of the

volume is represent by a solid
volume

• It is linked to a material via the
logical volume

7

Aspects of geometry

• For each volume, Geant4
considered 3 aspects:
• The shape and dimensions of the

volume is represent by a solid
volume

• It is linked to a material via the
logical volume

• It is placed relative to an enclosing
mother volume via physical
volume

8

Solid Volumes

• Geant4 provides a set of
geometric primitives, the
Constructed Solid Geometry
(CSG) solids, see [BAD, §4.1.2]

• For example, for a cuboid
volume use G4Box

• It need the half-length of the
cuboid

• Geant4 understands physical
units (e.g. mm, cm, kg, etc.)

9

Logical Volumes

• Via a G4LogicalVolume, a solid
volume is linked to a G4Material

10

Material Definition

• A G4Material can be either
manually defined or retrieve
from the G4NistManager
• Based on data from the National

Institute of Standard And
Technology (NIST) of the US
government

• Available materials are listed in
[BAD, §11.6]
→ in this lecture we will use these
predefined materials

11

Physical Placements

• A G4VPhysicalVolume can be
created from a logical volume via
G4PVPlacement constructor

• Geant4 keeps track of volume
objects and delete them a the end
of a run
→ Do not delete them in e.g. the
destructor

• During development/debugging it
is useful to set checkOverlap=true
→ checks if volumes which are not
mother/daughter occupy the same
space

12

Nested Volumes

• A volume is placed and rotated
relative to its enclosing mother
volume
→ hierarchy of nested volumes

• Outermost volume, i.e. those
without a mother volume, is the
world volume

• Construct has to return a pointer
to this world volume

13

Nested Volumes

• A volume is placed and rotated
relative to its enclosing mother
volume
→ hierarchy of nested volumes

• For example: to model an air-
filled iron box, place a smaller,
air-filled G4Box as daughter
volume inside a bigger, iron-
filled G4Box as mother volume

14

Translation and Rotation

G4ThreeVector myTrans =

G4ThreeVector(

1.*mm,

-10.3*m,

3.33*cm

);

G4RotationMatrix *myRot = new

G4RotationMatrix();

new G4PVPlacement(myRot,

myTrans, “myName”, …);

• The translation of a daughter
volume relative to its mother
volume is specified via a
G4ThreeVector object
• Default value is (0, 0, 0)

• The rotation is given via a
instance of G4RotationMatrix
• Do not delete the matrix after you

pass it to the G4PVPlacement

• Delete it in the destructor of
DetectorConstruction

15

Rotation

G4RotationMatrix *myRot = new

G4RotationMatrix();

myRot->rotateY(90.*degree)

new G4PVPlacement(myRot,

myTrans, “myName”, …);

• G4RotationMatrix is a typedef to
CLHEP::HepRotation

• User can define a rotation in
various ways, see the API
documentation

• For example: by default the
height of a G4Tubs is aligned to
the z-axis, to place it „on the
side“ parallel to the x-axis, one
can use rotateY(90.*degree)

16

https://geant4.kek.jp/Reference/10.06.p03/classCLHEP_1_1HepRotation.html

Translation

• Translation t is given relative to the centres of mother and daughter volumes

• By default, the daughter volume is centred with respect to the mother volume
t = G4ThreeVector(0., 0., 0.)

17

Hands-on

• Open ./src/detectorConstruction.cc in VSC and
• Change the „PMMA cube“ (lines 78-104) to a cube of

• 10 cm edge length (caution: G4Box takes half edge length as argument)
• Made of „G4_Ge“ from the NIST material manager

• Nest „cube“ as daughter volume within a new G4Box with
• 20 cm edge length
• Made of „G4_Galactic“ from the NIST material manager
• Named „vac“
• „cube“ is placed at the centre (0,0,0) of „vac“

• Nest „vac“ as daughter volume within a new G4Box with
• 22 cm edge length
• Made of „G4_Cu“ from the NIST material manager
• Named „shell“
• „vac“ is placed at the centre of „shell“
• „shell“ is placed at the centre of „world“ (which already exist)

• Use the modified ./mac/vis.mac from previous hands-on to visualise the setup with JAS3
• Check that the visualized geometry is correct

18

cube / G4_Ge

vac / G4_Galactic

shell / G4_Cu

Hands-on

19

cube / G4_Ge

vac / G4_Galactic

shell / G4_Cu

Primary Particle Generation
G4VUserPrimaryGeneratorAction; G4VPrimaryGenerator; G4GeneralParticleSource

20

Class Diagram

• The Geant4 class that implement
the generation of a primary
particle is the primary particle
generator

• It is derived from the abstract
base class G4VPrimaryGenerator

• It has to implement the method
void

GeneratePrimaryVertex(G4Event*

anEvent)

21

Class Diagram

• The generator is instantiate by
the primary generator action

• It is derived from the abstract
base class
G4VUserPrimaryGeneratorActio

n

• It has to implement the method
void GeneratePrimaries(G4Event*

anEvent)

22

G4VUserPrimaryGeneratorAction

• The primary generator action
can be instantiate via a
dedicated G4UserAction
Initialization class which
will handle the registering with
G4RunManager

23

G4VUserPrimaryGeneratorAction

• The class itself can be very simple:
it just has to instantiate the
primary particle generator

• Geant4 provides some predefined
primary particle generators:
• G4ParticleGun – to model a vertex

with fixed properties
→ Example in G4minWE

• G4GeneralParticleSource (GPS) –
can also model more complex
scenarios (primary particle
homogeneously distributed in a given
volume)
→We’ll use it in the hands-on

24

G4GeneralParticleSource

• For the G4GeneralParticleSource,
the user has to provide very little
code, but …

• It is very flexible

• It is controllable via macro
commands

25

G4GeneralParticleSource

• First, need to initialize Geant4

26

/run/initialize

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated
• Either elementary particle

27

/run/initialize

/gps/particle e-

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated
• Either elementary particle

• Or ion AZX, e.g. 31H

28

/run/initialize

/gps/particle ion

/gps/ion 1 3

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated

• Kinetic energy at start

29

/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated

• Kinetic energy at start

• Position of source (3D vector
with units)

30

/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated

• Kinetic energy at start

• Position at start

• Direction at start (3D vector
without units, does not need to
be a unit vector)

31

/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm

/gps/direction 1 2 3

G4GeneralParticleSource

• First, need to initialize Geant4

• Select the type of particle to be
generated

• Kinetic energy at start

• Position at start

• Direction at start

• Start simulation with 2 events

32

/run/initialize

/gps/particle ion

/gps/ion 1 3

/gps/energy 1. MeV

/gps/position 0. 0. 0. mm

/gps/direction 1 2 3

/run/beam 2

G4GeneralParticleSource

• Can be more complex, e.g.
• Define a cube (=parallelepiped

with all angles set to 0)

• With 1 cm edge length

• At position (0, 0, 0) mm

• Filled with 31H ions

• That is confined to the volume
“cube”

• And directions that are isotropic
distributed

• Full list of GPS commands
33

/run/initialize

/gps/pos/type Volume

/gps/pos/shape Para

/gps/pos/halfx 1. cm

/gps/pos/halfy 1. cm

/gps/pos/halfz 1. cm

/gps/pos/paralp 0

/gps/pos/parthe 0

/gps/pos/parphi 0

/gps/pos/centre 0. 0. 0. mm

/gps/confine cube

/gps/particle ion

/gps/ion 1 3

/gps/ang/type iso

/run/beam 2

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V11.0/html/Control/AllResources/Control/UIcommands/_gps_.html

Time Normalisation

• As each simulated event is
independent from each other,
the simulation has no intrinsic
time scale, i.e. does not “know”
how much time is passed
between the events

➔“ How long” does the virtual
experiment run?

34

Time Normalisation

• We need to normalize the amount of
simulated events to a known rate,
e.g.
• We model the measurement of a 60Co

source with a HPGe detector

• We simulate N0=1e6 events, each starts
with a 60Co decay

• The source has an activity of A=100 kBq
(1 Bq = 1 decay per second)

➔ In reality, our experiment would
have run for 10 s

35

• 𝑁0 = 106; 𝐴 = 100 kBq

𝑇 =
𝑁0
𝐴

=
106

100 kBq

=
106

100 ⋅ 103 s−1

= 10 s

Time Normalisation

• In the simulation, in N=1e4 events
an energy above the detection
threshold was deposited in the HPGe
detector
• Detection efficiency N/N0=1%

• What count rate R would this
correspond to?

➔ In reality, the HPGe would have a
count rate of R=103 s-1*

36

• 𝑁 = 104; 𝑇 = 10 s

𝑅 =
𝑁

𝑇

= 103 s−1

=
𝑁

𝑁0
⋅ 𝐴

*Proper unit is s-1, not Hz; albeit the dimensions are the same, Hz is used for periodic events

Hands-on

• Open ./src/primaryParticleAction.cc and the corresponding header
file in VSC

• Change the primary particle generator from „G4ParticleGun“ to
„G4GeneralParticleSource“

• Modify ./mac/vis_run.mac
• To use JAS3 for visualisation

• Use GPS to place 71Ge inside the „cube“ volume

• Simulate 20 events

• Open the scene-0.heprep.zip file in JAS3: what could the green lines
be?

37

Hands-on

38

run_vis.mac

Particle Tracking & Data Storage
User Action Classes; Run; Event; ROOT

39

ROOT

• ROOT is a data analysis framework
developed by CERN and widely
used with (high energy) particle
physics experiments
→ that’s why we will use it

• It’s open source:
https://root.cern.ch
(we will use version 6.22)

• Well documented:
https://root.cern/doc/v622

• Generally, data can also be
analysed with R, python, Mathlab,
etc.

40

https://root.cern.ch/
https://root.cern/doc/v622

Reminder From Lecture 1

• Run: all samples drawn within
this particular simulation

• Event: one drawn sample

• Track: trajectory of one particle
(there may be several in one
event)

• Step: move the particle along
the minimal mean free path
along its track

41

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

More
processes?

Enough
events?

Yes

No

RunEventStep

User Action Classes

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

• Geant4 offers 5 optional User
Action classes [BAD §6.3]

• Deviating these classes, users
can
• Modify the simulation

• Collect data

• At run/event/track/step level

42

User Action Classes

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

• Geant4 offers 5 optional User
Action classes [BAD §6.3]

• Deviating these classes, users
can
• Modify the simulation

• Collect data

• At run/event/track/step level

43

Register User Action Classes

• Like the PrimaryParticleAction,
the UserAction are instantiate
via a the G4UserAction
Initialization which will
handle the registering with
G4RunManager

44

G4UserRunAction

• Geant4 provide fully
implemented User Run Action
class
→ one doesn’t have to
implement it

• But if one provide a deviated
subclass, one can customize
many aspects of Geant4’s
handling of a run

45

G4UserRunAction

• For example: by overriding the
BeginOfRunAction and
EndOfRunAction methods, one
can executed code before a run
starts and after it’s finished

• This way, one could open and
close an output files to store the
simulated data

46

G4AnalysisManager

• Geant4 provides predefined
manager classes [BAD §9.2] to
handle data storage as
• CSV

• HDF5

• XML

• ROOT

• For example, use it to open a
ROOT output file in the Run
Action

47

G4AnalysisManager

• Geant4 provides predefined
manager classes [BAD §9.2] to
handle data storage as
• CSV

• HDF5

• XML

• ROOT

• For example, use it to open a
ROOT output file in the Run
Action

48

ROOT File Structure

• In the simplest case, a ROOT file
structured data sets using a
“Table” metaphor:
• Table ~ N-tuple ~ Tree
• columns (of a given data type like

int, double, …)
• Entries ~ rows

• In addition, a ROOT file can also
contain histograms of various
dimensions and precisions, e.g.
TH1D type → 1 dimensional with
double precision

49

G4UserEventAction

• Similarly, deviating a subclass from
G4UserEventAction allows the
customisation of how Geant4
handles events

• For example, by overriding the
BeginOfEventAction and
EndOfEventAction methods, one
can executed code before an event
starts and after it’s finished

• This way, one can perform simple
analysis tasks, e.g. extract data
from a sensitive detector

50

Sensitive Detector

• To simulate a particle detector
and the hits detected by it,
Geant4 provides the abstract
base classes
G4VSensitiveDetector and
G4VHit, respectively [BAD §4.4]

• The user can deviate a concrete
Sensitive Detector (SD) and hit
classes from it

51

Sensitive Detector

• One can attach a SD object to a
logical volume in
G4VUserDetectorConstructio

n::ConstructSDandField()

• Besides user defined SDs,
Geant4 provides also general
purpose SDs:
G4MultiFunctionalDetector

and G4VPrimitiveScorer
[BAD § 4.4.4]

52

Sensitive Detector

• At the start of each event, the
SDs are initialized:
• Each SD initializes a collection to collect

future hits = HitCollection (HC)

• Identified by the SD name and a
collection name

53

Sensitive Detector

• Each time a particle track pass
through the associated volume,
the ProcessHits() method of
the SD is called

• Data can be accessed through
the provided G4Step object

54

G4Step

• A G4Step is defined as the movement
of a G4Track between a PreStepPoint
and a PostStepPoint and allows to
access the quantities changed during
this move

• Especially, it allows to access
• The PreStepPoint
• The PostStepPoint
• The Track

• Allows access of deposited energy,
position and time of hit, see
documentation for all available data

• Default units are MeV, mm, ns [BAD
§3.3]

55

https://geant4.kek.jp/Reference/11.2.0/classG4Step.html

Sensitive Detector

• Each time a particle track pass
through the associated volume,
the ProcessHits() method of
the SD is called

• Data can be accessed through
the provided G4Step object

• And filled in Hit object

• Insert it in the HC

• How to access it, see slide 60

56

Hits

• The Hit class is mostly a data
container

• One can fill the hit object with
the data accessible from the
G4Step object

57

Hits

• The Hit class is mostly a data
container

• One can fill the hit object with
the data accessible from the
G4Step object

• For optimisation issues, Geant4
prescribe non-standard memory
allocation
→ Just copy’n’paste it from
Geant4 examples and adapt
names

58

Store Hit Data In A ROOT File

• In EventAction::EndOfEventAction
• Get the HitsCollection of the current

event

• Get the hit collection of the SD one is
interest in – via look-up the collection
name

• The entries of the collection have the
abstract base class G4VHit as type

• For the sake of convenience, cast it to
a std::vector<Hit> of the actual
subclass

59

Store Hit Data In A ROOT File

• In EventAction::EndOfEventAction
• Loop over all entries of the vector

to get the individual hits

• Read-out the relevant data fields
from the hit object

• Fill the data in the relevant N-
tuple / histograms of the ROOT file

• Once all entries of the N-tuple
(=columns) are filled, finalise the
N-tuple (=row) by calling
AddNtupleRow()

60

ROOT Prompt

• The ROOT prompt* interprets C++
commands

• Open a ROOT file via
root –l <name of file>

(-l suppress the splash screen)

• List content of file via
.ls

• List the structure of a TTree via
TTree::Print()

• Close the ROOT prompt via
.q

• For details see Manual

61*Alternative ways to interact with ROOT are PyROOT or jupyter notebooks.

https://root.cern/manual/first_steps_with_root/
https://root.cern/manual/python/
https://nbviewer.org/url/root.cern/doc/master/notebooks/rf301_composition.C.nbconvert.ipynb

Read a ROOT File

• Open a ROOT file via
root –l <name of file>

(-l suppress the splash screen)

• List content of file via
.ls

• List entries of column Y of tree X
X->Scan(“Y”)

• Draw histogram Z
Z->Draw()

62

1-dim Histogram – Draw

• A histogram can be created in
several ways
• TTree::Draw(<Expression>,
<Cut>, <Options>)

• Where <Expression>
• Specifies the column that contains

the data to be drawn, here: Edep
• May contain mathematical

operations on this data, here:
multiply Edep with 1000 to go from
MeV to keV

• Can specify the type of histogram,
here: TH1D with 50 bins between 0
and 10

63

1-dim Histogram – Project

• A histogram can be created in
several ways
• TTree::Draw(<Expression>,
<Cut>, <Options>)

• TTree::Project(<Histogram
name>, <Expression>, <Cut>,
<Options>)

• Similar, but store the histogram data
in an already existing histogram
object of name <Histogram name>
→ easier to process it, e.g. modifying
line color

• Create histogram object via, e.g.
TH1D(<Name>, <Title>,
<NbBins>, <Min>, <Max>)

64

1-dim Histogram - Normalisation

• Normalize it to bin width
• Get bin width of bin 1
TH1D::GetBinWidth(1)

• Multiply all bins with a given factor a
TH1D::Scale(a)

• → TH1D::Scale(1./
TH1D::GetBinWidht(1))

• To get an empirical Probability Density
Function (PDF), normalize the histogram
to unity
• Integral over the histogram
TH1D::Integral(“width”)
To get Integral=σ𝑖 𝑦𝑖 ⋅ Δx𝑖

• →TH1D::Scale(1./
TH1D::Integral(“width”))

65

Hands-on

• Adapt ./mac/run.mac to the same GPS settings we used in the previous hands-on and run it for
100 events

• Rename the produced cube.root file to cube1.root, open it in ROOT, use the Draw command to
plot “Edep*1000” in the range [0,20], store the plot via “File > Save as”

• Open ./src/RunAction.cc in VSC and delete the DColumns “PosX”, “PosY”, and “PosZ”

• Open ./src/EventAction.cc in VSC,
• Delete the commands that previously filled the “PosX”, “PosY” and “PosZ” columns
• Move the commands the filled the “Edep” column and histogram from inside the loop (lines 53-90) to after

the loop
• Add a double variable „sum“ that is Initialized to 0 before the loop
• Inside the loop, add „eDep“ to sum for each loop iteration
• After the loop, fill the value of „sum“ to the column „Edep“ and the histogram

• Compile and install the program, run the same macro file as before

• Open the produced root file in ROOT and make the same analysis as before

• What differences do you observe?

66

Hands-on

67

Before modification After modification

Energy deposition per „hit“
~ by each e-/X-ray interaction

Energy deposition per „event“
~ by each 71Ge decay

[D.N. Abdurashitov et al., NIM B 373 (2016) 5-9]

https://doi.org/10.1016/j.nimb.2016.02.029

Take Home Messages

• An accurate simulation needs an accurate geometry
→ in principle not difficult but needs time and good spatial sense

• Before developing your own primary particle generator
→ check if the General Particle Source is sufficient

• Storing of simulated data
• Choose a file format that‘s supported by your analysis tools

• Make a deliberate decision what to store: per hit, per event, applying some
selection criterion or not, …

68

