ISAPP School 2024 - KIT / Bad Liebenzell

GEANT4 Simulations for Rare
Event Searches

Holger Kluck - HEPHY - holger.kluck@oeaw.ac.at

2/3: Geometry, Primary Particle Generation, Particle Tracking & Data
Storage

Geometry

DetectorConstruction; Solid Volumes; Logical Volumes; Material Definition; Physical
Placement

DetectorConstruction

* In Geant4, the user has to derive
a concrete subclass from the

namespace Gaminke | abstract base class
class DetectorConstruction : public G4VUserDetectorConstruction { G4VUserDeteCtorCOnStructj_on and
public:
S implement the method
DetectorConstruction() = default; Construct ()

~DetectorConstruction() override = default;

it L * Geant4 calls this method to get a
g ATy 1 catlollimer EaRseruet()kaval ie: G4VPhysicalVolume* that

’ represent the geometry of the
experiment one wants to
simulate

DetectorConstruction

* In the main function, a pointer
to an instance of
DetectorConstriction has to be
passed to Geant4’s G4runManager
Via itS setUserInitialization
method

auto* runMgr = new G4RunManager;
runMgr->SetUserInitialization(new G4minWE: :DetectorConstruction);

runMgr->SetUserInitialization(new Shielding);

G4VisManager* visMgr = new G4VisExecutive;
visMgr->Initialize();

Aspects of geometry

* In Geant4, the geometric model
N of a virtual experiments consists
of one or several volumes

e For each volume, Geant4
considered 3 aspects

Aspects of geometry

e For each volume, Geant4

O considered 3 aspects:

* The shape and dimensions of the
volume is represent by a solid

") volume

Aspects of geometry

e For each volume, Geant4
considered 3 aspects:

* The shape and dimensions of the
volume is represent by a solid
volume

e |tis linked to a material via the
logical volume

Aspects of geometry

e For each volume, Geant4
considered 3 aspects:

* The shape and dimensions of the
/ volume is represent by a solid

volume

e |tis linked to a material via the
logical volume

* |t is placed relative to an enclosing
mother volume via physical
volume

Solid Volumes

- 040-20 1 "

2

In the picture:
pX = 30, pY = 40, pZ = 60

G4Box (const G4Stringé& pName,

G4double pX,
G4double pY,
G4double pZ)

e Geant4 provides a set of
geometric primitives, the
Constructed Solid Geometry
(CSG) solids, see [BAD, §4.1.2]

* For example, for a cuboid
volume use G4Box

* It need the half-length of the
cuboid

* Geant4 understands physical
units (e.g. mm, cm, kg, etc.)

Logical Volumes

auto* worldVoluem_logic = new G4LogicalVolume(

worldVolume_solid,
matAir,

"world"
)5

* Via a G4LogicalVolume, d solid
volume is linked to a g4mMaterial

10

Material Definition

* A G4Material can be either
manually defined or retrieve
from the GaNistManager

* Based on data from the National
Institute of Standard And

Technology (NIST) of the US
auto* matAil;' = nistﬁgr—>‘Fi‘nd(.)r‘Build‘M;al'-cer‘ia1(v”64‘_AI‘R")’," | - government

e Available materials are listed in
[BAD, §11.6]
-2 in this lecture we will use these
predefined materials

auto* nistMgr = G4NistManager::Instance();

11

Physical Placements

* A G4vPhysicalVolume Can be
created from a logical volume via
G4PVPlacement constructor

* Geant4 keeps track of volume
objects and delete them a the end
of a run

auto* worldVolume_physic = new G4PVPlacemen t(

» - | —> Do not delete them in e.g. the

G4ThreeVector(),

ey f destructor

* During development/debugging it
is useful to set checkOverlap=true
— checks if volumes which are not
mother/daughter occupy the same
space

12

Nested Volumes

* A volume is placed and rotated
relative to its enclosing mother
volume
-2 hierarchy of nested volumes

auto* worldVolume_physic = new G4PVPlacemen t(

o | * Outermost volume, i.e. those

G4ThreeVector(),

esahun ot T ot s without a mother volume, is the
world volume

e)
checkOverlaps

e Construct has to return a pointer
to this world volume

13

Nested Volumes

* A volume is placed and rotated
relative to its enclosing mother
volume

-2 hierarchy of nested volumes

* For example: to model an air-
’ , filled iron box, place a smaller,
J— i . air-filled c4ox as daughter

" volume inside a bigger, iron-
filled casox as mother volume

Translation and Rotation

GAThreeVector myTrans = * The translation of a daughter
G4ThreeVector (. .
1. *mm, volume relative to its mother
-10.3*m, volume is specified via a
* .
)?'33 cm G4ThreeVector object
e Default value is (0, 0, 0)
G4RotationMatrix *myRot = new * The rotation is given via a
G4RotationMatrix(); instance of G4RotationMatrix
* Do not delete the matrix after you
new G4PVPlacement (myRot, pass it to the G4PvPlacement
myTrans, “myName”, ..);

e Delete it in the destructor of
DetectorConstruction

Rotation

o RorationsatTix (;“?YROt = new * G4RotationMatrix is a typedef to
CranEenRaREaE CLHEP::HepRotation

 User can define a rotation in
new G4PVPlacement (myRot, various ways:, see the M
myTrans, “myName”, ..); documentation

myRot->rotateY (90. *degree)

* For example: by default the
height of a G4Tubs is aligned to
the z-axis, to place it ,on the

“ — . .
m x x side” parallel to the x-axis, one

Can uSe rotateY (90. *degree)

Yy

https://geant4.kek.jp/Reference/10.06.p03/classCLHEP_1_1HepRotation.html

Translation

Z

‘ » X : a a a
h - - L
:
v b
i
l
I
I b

t ! =
____________ el mmmmmmmm e e e oo SR R e_m- -
1]
1 1
1 b tl
1 I L
1 1 B P T
I
1
\ t
t = G4AThreeVector (0., 0., 0.) t = G4AThreeVector (0., 0., -a) t = G4AThreeVector (0., 0., -a+b)

e Translation t is given relative to the centres of mother and daughter volumes

* By default, the daughter volume is centred with respect to the mother volume
t = G4ThreeVector (0., 0., 0.)

17

Hands-on

* Open ./src/detectorConstruction.cc in VSC and

Change the ,,PMMA cube” (lines 78-104) to a cube of
* 10 cm edge length (caution: G4Box takes half edge length as argument)
 Made of ,,G4_Ge" from the NIST material manager

Nest ,,cube” as daughter volume within a new G4Box with

20 cm edge length

7] . sheII/G4_Cu
* Made of ,,G4_Galactic” from the NIST material manager
° Named ”Vac” vac / G4_Galactic
e ,cube”is placed at the centre (0,0,0) of ,vac”
Nest ,vac” as daughter volume within a new G4Box with e /G4 G
cube _Ge

* 22 cm edge length
 Made of ,,G4_Cu” from the NIST material manager

* Named ,shell”
e vac“is placed at the centre of ,shel

|II

« ,shell”is placed at the centre of ,,world” (which already exist)

Use the modified ./mac/vis.mac from previous hands-on to visualise the setup with JAS3
Check that the visualized geometry is correct

Hands-on

= matCu = nistMgr->=FindOrBuildMaterial ("G4 Cu");
yle shellHalflLength f2.;

shell solid, matCu,) ;
, shell logic, ', worldVoluem logic, , 0, checkOverlaps);

shell / G4_Cu

vac / G4_Galactic

vacHalfLength, wvacHalfLen
. shell logic,
cube / G4_Ge

* matGe = nistMgr-=FindOrBuildMaterial ("G4 Ge"});
ible cubeHalfLen]

* cube solid I G4Bo i cubeHalflLength, cubeHalfLength, cubeHalfLength);
* cube logi new (3 Ibe solid, matGe, " ');

, cube logic, "cube", vac logic, ., B, checkOverlaps);

Primary Particle Generation

G4VUserPrimaryGeneratorAction; G4VPrimaryGenerator; G4GeneralParticleSource

20

Class Diagram

* The Geant4 class that implement
the generation of a primary
particle is the primary particle

G4VUserPrimaryGeneratorAction G4VPrimaryGenerator ge n e r a to r
+void GeneratePrimaries(G4Event*)=0 +void GeneratePrimaryVertex(G4Event¥®)
N AN * |t is derived from the abstract
base class G4vPrimaryGenerator
MyEventGeneratorAction MyEventGenerator
void GeneratePrmares(oAEvent void GeneratePrmaryverte(GAEvent * It has to implement the method

void
GeneratePrimaryVertex (G4Event*
ankEvent)

Class Diagram

* The generator is instantiate by
the primary generator action

e It is derived from the abstract

G4VUserPrimaryGeneratorAction G4VPrimaryGenerator b |
+void GeneratePrimaries(G4Event*)=0 +void GeneratePrimaryVertex(G4Event¥®) ase C aSS
~ AN G4VUserPrimaryGeneratorActio
n
MyEventGeneratorAction MyEventGenerator M
* It has to implement the method

+void GeneratePrimaries(G4Event*) +void GeneratePrimaryVertex(G4Event*)

vold GeneratePrimaries (G4Event*

ankEvent)

G4VUserPrimaryGeneratorAction

* The primary generator action
can be instantiate via a
dedicated G4UserAction
Initialization class which

will handle the registering with
SetUserAction(new G4minWE: :EventAction);
} G4RunManager

src > €+ actionlnitialiser.cc > ...

void G4minWE: :ActionInitialiser::Build() const {

SetUserAction(new G4minWE: :PrimaryParticleAction);

SetUserAction(new G4minWE: :RunAction);

G4VUserActionlInitialization

+void Build() const=0

/\

MyActionlInitialization

+void Build() const

23

G4VUserPrimaryGeneratorAction

* The class itself can be very simple:
it just has to instantiate the
primary particle generator

G4eneralparticlesource; * Geant4 provides some predefined
primary particle generators:

* G4ParticleGun —to model a vertex
PrimaryParticleAction(}; Wlth flxed propertles
~PrimaryParticleAction ; 9 Example |n G4m|nWE

GeneratePrimaries (G4Event F * G4GeneralParticleSource (GPS) —
can also model more complex
scenarios (primary particle
homogeneously distributed in a given
volume)
- We’ll use it in the hands-on

PrimaryParticleAction :

G4GeneralParticleSource* gps

24

G4GeneralParticleSource

* For the G4GeneralParticleSource,
the user has to provide very little
code, but ...

* It is very flexible

* It is controllable via macro
ticleAction: :~PrimaryParticleAction() { CO m m a n d S

iaryParticleAction: :GeneratePrimaries (G4Event* evt) {

gps->GeneratePrimaryVertex(evt);

25

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be
generated

e Either elementary particle

/gps/particle e-

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be
generated
e Either elementary particle
* Orion#A)X, e.g.3H

/gps/particle ion
/gps/ion 1 3

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be

/gps/particle ion generated

/gps/ion 1 3 . .
* Kinetic energy at start

/gps/energy 1. MeV

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be

/gps/particle ion generated

/gps/ion 1 3 . .

* Kinetic energy at start
/gps/energy 1. MeV * Position of source (3D vector
/gps/position 0. 0. 0. mm with units)

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be

/gps/particle ion generated

/gps/ion 1 3 . .
* Kinetic energy at start

/gps/energy 1. MeV e Position at start
/gps/position 0. 0. 0. mm * Direction at start (3D vector
/gps/direction 1 2 3 without units, does not need to

be a unit vector)

G4GeneralParticleSource

/run/initialize * First, need to initialize Geant4

* Select the type of particle to be

/gps/particle ion generated

/gps/ion 1 3 . .
* Kinetic energy at start

/gps/energy 1. MeV e Position at start
/gps/position 0. 0. 0. mm e Direction at start

/gps/direction 1 2 3 . . .
gps/direction e Start simulation with 2 events

/run/beam 2

G4GeneralParticleSource

/run/initialize

e Can be more complex, e.g.

* Define a cube (=parallelepiped
with all angles set to 0)

/gps/pos/type Volume
/gps/pos/shape Para
/gps/pos/halfx 1. cm

/gps/pos/halfy 1. cm * With 1 cm edge length
/gps/pos/halfz 1. cm * At position (0, 0, 0) mm

1p O . . .
fope/pos/paraly * Filled with 3,H ions
/gps/pos/parthe 0 _ '

| That is confined to the volume

/gps/pos/parphi 0 y i’
/gps/pos/centre 0. 0. 0. mm CUbe
/gps/confine cube * And directions that are isotropic
/gps/particle ion distributed

/gps/ion 1 3

/gps/ang/type iso

e Full list of GPS commands

/run/beam 2

33

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V11.0/html/Control/AllResources/Control/UIcommands/_gps_.html

Time Normalisation

e As each simulated event is
independent from each other,
the simulation has no intrinsic
time scale, i.e. does not “know”
how much time is passed
between the events

=2 “ How long” does the virtual
experiment run?

Time Normalisation

. N, = 10%; A = 100 kBq * We need to normalize the amount of
’ simulated events to a known rate,
_— No e.g.
A * We model the measurement of a °°Co
source with a HPGe detector
10° * We simulate N,=1e6 events, each starts
= with a ®9Co decay
100 kBq * The source has an activity of A=100 kBq
10° (1 Bq =1 decay per second)
- 100-103s71

=> In reality, our experiment would

=10s have run for 10 s

Time Normalisation

e N=10%T=10s * In the simulation, in N=1e4 events
an energy above the detection
R = ﬂ threshold was deposited in the HPGe
T detector
— 10351 * Detection efficiency N/N,=1%
* What count rate R would this
N correspond to?
——. A
Ny

=> In reality, the HPGe would have a
count rate of R=103 s'1°

"Proper unit is s1, not Hz; albeit the dimensions are the same, Hz is used for periodic events

Hands-on

* Open ./src/primaryParticleAction.cc and the corresponding header
file in VSC

* Change the primary particle generator from , G4ParticleGun® to
,G4GeneralParticleSource”

* Modify ./mac/vis_run.mac
* To use JAS3 for visualisation
e Use GPS to place "!Ge inside the ,cube” volume
* Simulate 20 events

* Open the scene-0.heprep.zip file in JAS3: what could the green lines
be?

Hands-on

#Place 71Ge ions
/gps/pos/type Volume
/gps/pos/shape Para
/gps/pos/halfx 5.5 cm
/gps/pos/halfy 5.5 cm
/gps/pos/halfz 5.5 cm
/gps/pos/paralp
fgpgfpﬂSHparthE
/gps/pos/parphi
/gps/pos/centre @. 0.
/gps/pos/confine cube
/gps/particle ion
/jgps/ion 32 71
/gps/energy @ MeV
/gps/ang/type iso

#Simulate 10 events, one primary particle per event
/Jrun/beamOn 16

38

Particle Tracking & Data Storage

ROOT

* ROOT is a data analysis framework

developed by CERN and widel
used with (high energy) particle
physics experiments

- that’s why we will use it

* |t's open source:
https://root.cern.ch
(we will use version 6.22)

e Well documented:
https://root.cern/doc/v622

* Generally, data can also be
analysed with R, python, Mathlab,
etc.

About Install Get Started Forum & Help Manual

ROOT: analyzing petabytes of data, scientifically.

An open-source data analysis framework used by high energy physics and others.

© Learn more . Install v6.30.06

40

https://root.cern.ch/
https://root.cern/doc/v622

Reminder From Lecture 1

Initialise physics model
and geometry model

Create primary particle

Propagate particle
through geometry

Apply physics processes

Compute observable

More
processes?

Enough
events?

Step

— Event

— Run

* Run: all samples drawn within
this particular simulation

* Event: one drawn sample

* Track: trajectory of one particle
(there may be several in one
event)

e Step: move the particle along
the minimal mean free path
along its track

41

User Action Classes

G4UserRunAction
G4UserEventAction
G4UserTrackingAction

G4UserSteppingAction

* Geant4 offers 5 optional User
Action classes [BAD §6.3]

* Deviating these classes, users
can

* Modify the simulation
* Collect data

* At run/event/track/step level

User Action Classes

G4UserRunAction
G4UserEventAction
G4UserTrackingAction

G4UserSteppingAction

* Geant4 offers 5 optional User
Action classes [BAD §6.3]

* Deviating these classes, users
can

* Modify the simulation
* Collect data

* At run/event/track/step level

Register User Action Classes

G4VUserActionlnitialization

+void Build() const=0

/N

MyEventAction

MyActionlnitialization

+void Build() const

MyRunAction

* Like the PrimaryParticleAction,
the UserAction are instantiate
via a the G4UserAction
Initialization which will

handle the registering with
G4RunManager

G4UserRunAction

* Geant4 provide fully
implemented User Run Action

_ class
G4UserRunAction ,
- one doesn’t have to
implement it
N P
e But if one provide a deviated
MyRunAction subclass, one can customize
+void Begin unAction(cons un* ’
+voij EngOf(IJ%LRnACP’EiCEn(C(()nst th;URn*)) many aSPECtS Of Geant4 S

handling of a run

G4UserRunAction

* For example: by overriding the
BeginOfRunAction and
EndOfRunAction methods, one
can executed code before a run

~ starts and after it’s finished

G4UserRunAction

* This way, one could open and
MyRunAction close an output files to store the
+void BeginOfRunAction(const G4Run*) S| mMmu |ated d ata

+void EndOfRunAction(const G4Run*)

G4AnalysisManager

v #ifndef INCLUDE_RUNACTION_HH_
#define INCLUDE_RUNACTION_HH_

#include "G4UserRunAction.hh"
class G4Run;

class G4RootAnalysisManager;

v namespace GAminWE{
v class RunAction : public G4UserRunAction{
public:

RunAction();

~RunAction() override = default;

void BeginOfRunAction(const G4Run*) override;
void EndOfRunAction(const G4Run*) override;

private:
G4RootAnalysisManager* anaMgr{nullptr};

* Geant4 provides predefined
manager classes [BAD §9.2] to
handle data storage as

* CSV
* HDF5
* XML
* ROOT

* For example, use it to open a
ROOT output file in the Run
Action

47

G4AnalysisManager

v G4minWE: :RunAction: :RunAction() {

A

26 ® anaMgr = G4AnalysisManager::Instance();

49 v void GAminWE: :RunAction::BeginOfRunAction(const G4Run*) {

GAString fileName = "cube.root”;
anaMgr->0OpenFile(fileName);

}

v void G4minWE: :RunAction::EndOfRunAction(const G4Run*) {
anaMgr->Write();

anaMgr->CloseFile();

}

* Geant4 provides predefined
manager classes [BAD §9.2] to
handle data storage as

* CSV
* HDF5
* XML
* ROOT

* For example, use it to open a
ROOT output file in the Run
Action

48

ROOT File Structure

BN :rnsction: Runaction() { * In the simplest case, a ROOT file
structured data sets using a
e oo “Table” metaphor:
R | ‘ * Table ~ N-tuple ~ Tree
R e e columns (of a given data type like
T e e int, double, ...)

anaMgr->CreateNtupleDColumn("PosY");

1 ~
anaMgr->CreateNtupleDColumn("“PosZ"); ¢ EntrleS rows

et e e, * |n addition, a ROOT file can also

i e contain histograms of various
R LTS G dimensions and precisions, e.g.
. o TH1D type = 1 dimensional with

double precision

anaMgr = G4AnalysisManager::Instance();

49

G4UserkEventAction

* Similarly, deviating a subclass from
G4UserEventAction allows the
customisation of how Geant4

G4UseEventAction handles eventS
* For example, by overriding the
/\ BeginOfEventAction and

EndOfEventAction methods, one
can executed code before an event
starts and after it’s finished

* This way, one can perform simple
analysis tasks, e.g. extract data
from a sensitive detector

MyEventAction

+void BeginOfEventAction(const G4Event¥)
+void EndOfEventAction(const G4Event¥)

Sensitive Detector

G4VSensitiveDetector G4VHit
+G4bool ProcessHits(G4Step*, G4TouchableHistory*) =0
+void Initialize(G4HCofThisEvent*)
+void EndOfEvent(G4HCof ThisEvent*) / \
MySensitiveDetector Hit

-G4THitsCollection<Hit> HC

* To simulate a particle detector
and the hits detected by it,
Geant4 provides the abstract
base classes
G4VSensitiveDetector and
G4VHit, respectively [BAD §4.4]

e The user can deviate a concrete
Sensitive Detector (SD) and hit
classes from it

Sensitive Detector

src > G+ detectorConstruction.cc > & ConstructSDandField()

void G4minWE: :DetectorConstruction::ConstructSDandField() {

auto* detector = new G4minWE: :SensitiveDetector(

“"cube",
"cubeHC"
);

SetSensitiveDetector(
"cube",
detector

);

GASDManager: :GetSDMpointer()->AddNewDetector(detector);

* One can attach a SD object to a
logical volume in

G4VUserDetectorConstructio

n::ConstructSDhDandField ()

* Besides user defined SDs,
Geant4 provides also general
purpose SDs:
G4MultiFunctionalDetector
and G4VvPrimitiveScorer
[BAD § 4.4.4]

52

Sensitive Detector

void G4minWE::SensitiveDetector::Initialize(G4HCofThisEvent *hitCollection) {

HCollection = new HitsCollection(SensitiveDetectorName, collectionName[@]);

G4int hcID = G4SDManager: :GetSDMpointer()->GetCollectionID(
collectionName[@]);

hitCollection->AddHitsCollection(hcID, HCollection);

e At the start of each event, the

SDs are initialized:

e Each SD initializes a collection to collect
future hits = HitCollection (HC)

* Identified by the SD name and a
collection name

53

Sensitive Detector

* Each time a particle track pass

through the associated volume,

- G4bool GAminWE::SensitiveDetector: :ProcessHits(GaStep *step, G4TouchableHistory*) { t Ne ProcessHits () mEthOd Of
il e = s see e perest(: the SD is called

if (edep == 0.) {
return false;

e Data can be accessed through
the provided G4step object

auto *newHit = new GAminWE::Hit();

newHit->SetEnergDeposit(edep);
newHit->SetPosition(step->GetPostStepPoint()->GetPosition());

HCollection->insert(newHit);

return true;

54

G4Step

* AG4step is defined as the movement
of a G4Track between a PreStepPoint
and a PostStepPoint and allows to

Track _ access the quantities changed during

this move
* Especially, it allows to access
* The PreStepPoint
* The PostStepPoint
\ .@ * The Track
P

* Allows access of deposited energy,
position and time of hit, see

: documentation for all available data

tep

[O ° J * Default units are MeV, mm, ns [BAD
§3.3]

PreStepPoint PostStepPoint

https://geant4.kek.jp/Reference/11.2.0/classG4Step.html

Sensitive Detector

* Each time a particle track pass

through the associated volume,

- G4bool GAminWE::SensitiveDetector: :ProcessHits(GaStep *step, G4TouchableHistory*) { t Ne ProcessHits () mEthOd Of
il e = s see e perest(: the SD is called

if (edep == 0.) {
return false;

e Data can be accessed through
the provided G4step object

auto *newHit = new GAminWE::Hit();

newHit->SetEnergDeposit(edep);

newHit->SetPosition(step->GetPostStepPoint()->GetPosition());

* And filled in Hit object
* Insert it in the HC
* How to access it, see slide 60

Hits

ace G4AminWE{

Tt * The Hit class is mostly a data
container

Hit() = default;

Hit(cc

* One can fill the hit object with

G4bool operator==(const Hit& right) const; the data acceSSible from the
,/c@,ﬁ ¥ operator new(sizeft)5 G 4 S t ep O bj e Ct

void operator delete(void*);

oid Draw() ove
d Print() override;

d SetEnergDeposit(G4double edep);
oid SetPosition(const G4ThreeVector &pos);

G4double GetEnergyDeposit()
G4ThreeVector GetPosition()

rivate:
G4double EnergyDeposit { ©. };
GAThreeVector Position;

Hits

* The Hit class is mostly a data
include > hithh > {} G4AminWE > *O HitsCollection container

namespace GAminWE{
55 using HitsCollection = G4THitsCollection<Hit>;

* One can fill the hit object with
extern G4ThreadlLocal G4Allocator<Hit> *HitAllocator; the data acceSS|b|e from the

v inline void* Hit::operator new(size_ t) { G4 Step ObJECt
% if (!HitAllocator) {
HitAllocator = new G4Allocator<Hit>; * For optimisation issues, Geant4
ietur‘n (void*) HitAllocator->MallocSingle(); prescribe non-Standard memory
} allocation
v inline void Hit::operator delete(void *hit) { 9 jUSt COpy’n'paSte it from
: HitAllocator->FreeSingle((Hit*) hit); Geant4 examples and adapt
¥ names

58

Store Hit Data In A ROQOT File

* I[N EventAction: :EndOfEventAction

G4minWE: :EventAction: :EndOfEventAction(G4Event* anEvent) { * Get the Hitsco"eCtion Of the Cu rrent
event
* Get the hit collection of the SD one is

interest in — via look-up the collection
name

* The entries of the collection have the
abstract base class G4vHit as type

* For the sake of convenience, cast it to
o e T e e a std: :vector<Hit> of the actual
* hitVec = <G4minWE: :HitsCollection*=(hitCol) -=GetVector(); SUbC|aSS

* hce = anEvent->GetHCofThisEvent();

G4int id = G4SDManager::GetSDMpointer()-=GetCollectionID("cubeHC");

59

Store Hit Data In A ROQOT File

for (auto* hit : *hitVec){
®* |N EventAction: :EndOfEventAction

G4double eDep = hit->GetEnergyDeposit();

oy CThrectiectort pos = i cetosition(); * Loop over all entries of the vector
to get the individual hits

« Read-out the relevant data fields
from the hit object

* Fill the data in the relevant N-
<> tuple / histograms of the ROOT file
* Once all entries of the N-tuple

0 (=columns) are filled, finalise the
N-tuple (=row) by calling

S AddNtupleRow ()

/3
anaMgr->AddNtupleRow();

60

ROOT Prompt

* The ROOT prompt” interprets C++
commands

* Open a ROOT file via

root -1 <name of file>
(-1 suppress the splash screen)

e List content of file via
. 1S

List the structure of a TTree via
TTree: :Print ()

Close the ROOT prompt via
e
e For details see Manual

*Alternative ways to interact with ROOT are PyROOT or jupyter notebooks.

https://root.cern/manual/first_steps_with_root/
https://root.cern/manual/python/
https://nbviewer.org/url/root.cern/doc/master/notebooks/rf301_composition.C.nbconvert.ipynb

Read a ROQOT File

Tot
Energy deposition in cube CS

e by by by s e sy b e b s b
0 0.01 0.02 0.03 0.04 0.05 006 007 0.08 009 041

* Open a ROOT file via

root -1 <name of file>
(-1 suppress the splash screen)

e List content of file via
. 1S

e List entries of column Y of tree X
X=>Scan (“Y")

* Draw histogram Z
Z—>Draw ()

1-dim Histogram — Draw

* A histogram can be created in
several ways

* TTree: :Draw (<Expression>,
<Cut>, <Options>)

* Where <Expression>

* Specifies the column that contains
the data to be drawn, here: Edep

* May contain mathematical
operations on this data, here:
multiply Edep with 1000 to go from
MeV to keV

Ewﬂsﬂﬂsya * Can specify the type of histogram,

here: TH1D with 50 bins between O
and 10

Edep*1000

1-dim Histogram — Project

* A histogram can be created in
several ways

* TTree: :Draw (<Expression>,
<Cut>, <Options>)

* TTree: :Project (<Histogram
name>, <Expression>, <Cut>,
<Options>)

* Similar, but store the histogram data
in an already existing histogram
object of name <Histogram name>
—> easier to process it, e.g. modifying
line color

* Create histogram object via, e.g.
TH1D (<Name>, <Title>,
<NbBins>, <Min>, <Max>)

File Actions Edit View el
g4@g4-virtualbox: ~/Install

1-dim Histogram - Normalisation

e Normalize it to bin width

 Get bin width of bin 1
TH1D: :GetBinWidth (1)

* Multiply all bins with a given factor a
TH1D::Scale(a)

e > THID::Scale(1l./
TH1D: :GetBinWidht (1))

* To get an empirical Probability Density
Function (PDF), normalize the histogram
to unity

* Integral over the histogram
TH1D::Integral (“width”)

To get Integral=),; y; - Ax;

* DTH1D::Scale(1l./
TH1D: :Integral (“width”))

Hands-on

* Adapt ./mac/run.mac to the same GPS settings we used in the previous hands-on and run it for
100 events

* Rename the produced cube.root file to cubel.root, open it in ROOT, use the Draw command to
plot “Edep™*1000” in the range [0,20], store the plot via “File > Save as”

* Open ./src/RunAction.cc in VSC and delete the DColumns “PosX”, “PosY”, and “PosZ”

. Open ./src/EventAction.cc in VSC,
Delete the commands that previously filled the “PosX”, “PosY” and “PosZ” columns

. I\P/:O\{e the commands the filled the “Edep” column and histogram from inside the loop (lines 53-90) to after
the loop

* Add a double variable ,sum” that is Initialized to O before the loop
* Inside the loop, add ,,eDep” to sum for each loop iteration
» After the loop, fill the value of ,sum” to the column ,Edep” and the histogram

* Compile and install the program, run the same macro file as before
* Open the produced root file in ROOT and make the same analysis as before
* What differences do you observe?

Hands-on

Before modification

Sum energy of Auger Energy of X-ray Percent of all decays
electrons

10.367 0.0 41.4
1.143 9.224 13.7
1.116 9.251 27.4
0.107 10.260 1.7
0.103 10.264 3.5
1.299 0.0 103
0.160 0.0 2.0

[D.N. Abdurashitov et al., NIM B 373 (2016) 5-9]

After modification

Edep*1000
_ TH1D
250 — Entries 1061
- Mean 0.8875
: Std Dev 2.264
200—
150
100
50:—
D _L‘J 1 I | 1 1 I 1 1 1 | 1 1 1 I‘i |y ‘. 1 1 | I 1 | 1 I 1 1 1 I 1 1 1 I 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Energy deposition per , hit”
~ by each e-/X-ray interaction

Edep*1000

90

80

70

60

50

40

w
o

n
o

—_
(=]

o

TH1D

Entries
Mean
Std Dev

100
9.416
2.748

CETTT

2 4 6 8 10 12 14 16

18

Energy deposition per , event”

~ by each "1Ge decay

20

67

https://doi.org/10.1016/j.nimb.2016.02.029

Take Home Messages

* An accurate simulation needs an accurate geometry
-2 in principle not difficult but needs time and good spatial sense

* Before developing your own primary particle generator
- check if the General Particle Source is sufficient

* Storing of simulated data

* Choose a file format that’s supported by your analysis tools

* Make a deliberate decision what to store: per hit, per event, applying some
selection criterion or not, ...

