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Plan of the talk

[1] What are cosmic rays and how to study them
[2] The “sizes” of cosmic rays —> from low to extreme energies
[3] The "orthodoxy” —> the supernova remnant paradigm
[4] Follow the energy —> supernova explosions
—> is there room left for other sources?
[5] Follow the physics —> where does acceleration end?
—> the Hillas criterion
[6] Follow the mass —> isotopic anomalies
—> the role of stellar winds: polluters or accelerators?

[7] Conclusions —> do we need mixed scenarios?



[1] What are cosmic rays
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What are cosmic rays?

1.1 What are cosmic rays?

Cosmic ray particles hit the Earth’s atmosphere at the rate ol about 1000 per square
meler per second. They are 1onized nuclei — about 90% protons, 9% alpha particles
and the rest heavier nuclei — and they are distinguished by their high energies.
Most cosmic rays are relativistic, having energies comparable to or somewhat
greater than their masses. A small but very interesting [raction of them have ultra-
relativistic energies extending up to 10 eV (about 20 joules), eleven orders of
magnitude greater than the equivalent rest mass energy of a proton. The funda-
mental question of cosmic ray physics is, “Where do they come from?” and, in
particular, “How are they accelerated to such high energies?”

The answer to the question of the origin of cosmic rays is not yet fully known.
[t 15 clear, however, that nearly all of them come from outside the solar system,
but from within the Galaxy. The relatively few particles of solar origin are char-
acterized by temporal association with violent events on the Sun and consequently
by a rapid variability. In contrast, the bulk ol cosmic rays show an anti-correlation
with solar activity, being more effectively excluded from the solar neighborhood
during periods when the expanding, magnetized plasma from the Sun — the solar
wind —1s most intense. The very highest energy cosmic rays have gyroradil in Lyp-
1cal galactic magnetic fields that are larger than the size of the Galaxy. These may
be of extragalactic origin.

Gaisser, Engel, Resconi "Cosmic Rays and Particle Physics" (2016)
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[t is clear, however, that nearly all of them come from outside the solar system,
but from within the Galaxy. The relatively few particles of solar origin are char-

acterized by temporal association with violent events on the Sun and consequently
by a rapid variability. In contrast, the bulk ol cosmic rays show an anti-correlation
with solar activity, being more effectively excluded from the solar neighborhood
during periods when the expanding, magnetized plasma from the Sun — the solar
wind —1s most intense. The very highest energy cosmic rays have gyroradil in Lyp-
1cal galactic magnetic fields that are larger than the size of the Galaxy. These may
be of extragalactic origin.

Gaisser, Engel, Resconi "Cosmic Rays and Particle Physics" (2016)



Cosmic ray sources: why is it so difficult?

...magnetic field...

}[_CR éour'ce I

We cannot do CR Astronomy.

Need for indirect identification of CR sources.
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The (local) Cosmic Ray spectrum
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The (local) Cosmic Ray spectrum
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The (local) Cosmic Ray spectrum
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The cosmic ray spectrum
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The cosmic r'ay spectrum.
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The cosmic r'ay spectrum
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Luke's questions

Luke Drury's brief (and very nice) review (2018)

1. The first is the question of where the energy comes
from which powers the acceleration of the cosmic
rays? In other words, what drives the accelerator?

2. The second is the question of where do the atoms
come from which end up being accelerated? In
other words, what is the source of the matter that
gets fed into the accelerator?

3. And the third and final sense is the question of
where exactly the accelerator is located and how
does it work? In other words, what is the physics?
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1. The first is the question of where the energy comes
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rays? In other words, what drives the accelerator?
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other words, what is the source of the matter that
gets fed into the accelerator?

3. And the third and final sense is the question of
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; These are actually three d1ﬂ‘erent questlons Wthh re- "
,1' quire different solution methods and answers, and some |
| of the confusion in the field has been due to people not |

arefully distinguishing these concepts.
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[2] The "sizes” of cosmic rays
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The PeV domain (100 TeV-10 PeV)
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The PeV domain (100 TeV-10 PeV)
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The orthodoxy (1)

2 The bulk of the energy of cosmic rays originates

from supernova explosions in the Galactic disk
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The orthodoxy (1)
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The orthodoxy (1)

L he bulk of the ener'gy of CRs omgma’res fr'om SN explosuons in ’rhe Galac’rlc dlSk
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for a review see e.g. Gabici, Evoli, Gaggero, Lipari, Mertsch, Orlando, Strong, Vittino, LTMPD (2019)




The orthodoxy (2)

2 Cosmic rays are diffusively confined within an

extended and magnetised Galactic halo
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The or"rhodoxy (2)

A

" grammage p A, ~ 10 g/cm2 ——> lgisk = 7~ 1 Mpc

for a review see e.g. Gabici, Evoli, Gaggero, Lipari, Mertsch, Orlando, Strong, Vittino, LTMPD (2019)
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The or"rhodoxy (2)

> disk radius!
— ) A, 4 I
|grammage | A, ~ 10 g/cm” — lgisr = ~ 1 Mpc |> diffusion |
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for a review see e.g. Gabici, Evoli, Gaggero, Lipari, Mertsch, Orlando, Strong, Vittino, LTMPD (2019)
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The orthodoxy (3)

2 Cosmic rays are accelerated out of the (dusty)
interstellar medium through diffusive shock

acceleration in supernova remnants
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The or"rhodoxy (3)

l‘ effechve grammage i

Ag ~ 0 Tesc C

| mean density |

for a review see e.g. Gabici, Evoli, Gaggero, Lipari, Mertsch, Orlando, Strong, Vittino, LTMPD (2019)




The orthodoxy (3)
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The or"rhodoxy (3)
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The or"rhodoxy (3)
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2 CRs are accelerated out of the (dusty) ISM through DSA in SNRs |

The orthodoxy (3)

S

E—

—

Data are best
| explained if
refractory
CRs are
injected at
shocks
through

pre-
accelerated

1
Ellison, Drury, Meyer (1997)

/Solar [Hydrogen = 1]

sputtering of

dust grains |

sources

100

10

— ® Refractories > 1250 K

B @ Semi—Volatiles 1250-875 K
- [ volatiles 875—400 K
| O Highly Volatile < 400 K
ll: dotted line (2000 km/s)

lll: dot—dashed line (400 km/s)

refractory ;

(us’r)

|

MESSAGE
CR composition
deserves more

attention

MASS, A [amu]

[~(A/Q)"]

see also Caprioli+ 2017

for a review see e.g. Gabici, Evoli, Gaggero, Lipari, Mertsch, Orlando, Strong, Vittino, LTMPD (2019)




[3] Follow the energy
Is there space left
for other sources?
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Stellar wind termination shocks§

Cassé & Paul 1980, 1982 — Cesarsky & Montmerle 1983
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' Bonus: Wolf-Rayet wind material enriched in 22Ne —> composition (with dilu'rion)
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Then nobody cared for few decades...

|
|
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about star clusters winds
between 1983 and 2019
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[4] Follow the physics
Where does acceleration end?
The Hillas criterion
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Stars or star clusters? Gamma rays...

Aharonian+ 2019, plus several papers especially by Yang and collaborators
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Stars or star clusters? Gamma rays...

Aharonian+ 2019, plus several papers especially by Yang and collaborators
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Stars or star clusters? Gamma rays...

Aharonian+ 2019, plus several papers especially by Yang and collaborators
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Stars or star clusters? Gamma rays...

Aharonian+ 2019, plus several papers especially by Yang and collaborators
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Stars or star clusters? Gamma rays...

Aharonian+ 2019, plus several papers especially by Yang and collaborators
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Charged particles and electromagnetic fields

cosmic rays are charged particles —> they are affected by electromagnetic fields
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Charged particles and electromagnetic fields

cosmic rays are charged particles —> they are affected by electromagnetic fields

2 50

Simplifying assumption —> consider only constant fields

A particle of charge g moving at a velocity u fill experience a force:

N
ST _q<E x>
.

relativistic momentum p = fymﬁ’

Lorentz force
L to velocity —>
doesn't change
| the particle energy!

|
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Can we keep a static and uniform electric
field in an astrophysical plasma?

unfortunately, that's quite difficult...

An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"..a basic property of plasma, its tendency towards electrical neutrality. If over a
large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce these
potential difference, i.e., to restore electrical neutrality.”

(Lyman Spitzer "Physics of fully ionised gases”)
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An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"..a basic property of plasma, its tendency towards electrical neutrality. If over a
large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce
these potential difference, i.e., to restore electrical neutrality.”
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So, the answer is no..
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Can we keep a static and uniform electric
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unfortunately, that's quite difficult...
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An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"..a basic property of plasma, its tendency towards electrical neutrality. If over a
large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce these
potential difference, i.e., to restore electrical neutrality.”

(Lyman Spitzer "Physics of fully ionised gases”)

..but there is still maybe some hope? |

= aaa———————

So, the answer is no..
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Way-out: time varying B

.~ We DO need electric fields o accelerate particles! |

- L

'd Maxwell equations ﬂ

—

w =4mp =0 —> plasma quasi-neutrality

Q F_ar'aday Icﬂ

VE = o

. Ar - 10 E_’ A time varying magnetic field |

V X B = 7 acts as a source of electric field! |
¢! ot e




An equivalent way: change rest frame
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An equivalent way: change rest frame
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. Consider a magnetised cloud of plasma moving at a (non relativistic) velocity u |

primed quantities —> cloud frame
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| an observer in the lab frame sees an electric field!
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Interstellar bubbles around star clusters

Castor+ 75, Weaver+ 77, McCray&Kafatos 87, Mac Low&McCray 88, Koo&McKee 92...
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Particle acceleration at WTSs: Emax

-& Hilv!gs criterium —> H Emaac ~ <E> BsusRs

Morlino+ 2021
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Particle acceleration at WTSs: Emax

ot st = ] q
'{! HIIJ.’CLS criterium —> | Emax ~ (E) BS/U’SRS

Morlino+ 2021
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[5] Follow the mass
Isotopic anomalies
Stellar winds: polluters or
accelerators?
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Can supernova remnants explain all CRs?

WR stars pollute of 22Ne the interior of the bubble —> mixing with
ambient ISM —> supernovae explode —> supernova remnants accelerate

the polluted/mixed material (see papers by Lingenfelter+, Parizot+ ... )

w }; WTSs of WR stars accelerate wind material enriched in 22Ne

(Tatischeff+ 2021)



Can supernova remnants explain all CRs?

WR stars pollute of 22Ne the interior of the bubble —> mixing with

ambient ISM —> supernovae explode —> supernova remnants accelerate

the polluted/mixed material (see papers by Lingenfelter+, Parizot+ ... )

- WTSs of WR stars accelerate wind material enriched in 22Ne

(Tatischeff+ 2021)

d Questions: & Do WTSs accelerate CRs?

& If so, how many of them?

¥ Can star clusters (WTS plus SNR inside superbubbles) explain all CRs?
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Interstellar bubbles around star clusters
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The X = 22Ne/20Ne ratio
can be explained!

fraction of CRs
coming from winds

SN

XCRNT]wa (1_77w XSNO()9>XS

/ \ \ 7

Solar/interstellar
Isotopic ratio
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in CRs (corrected for CR efficiency)
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. accurate analysis of CR abundances (Tﬂ'"-"‘:heff+ 2021) - ~67° |




Conclusions: mixed origin fro CRs?

® Supernova remnants most likely provide most CRs —> follow the energy!

B Star clusters accelerate CRs (we see gamma rays!)

& YOUNEG star clusters accelerate CRs —> WTSsl!

B Stellar winds must play a role (22Ne) —> follow the mass!

& Passive (polluters) and/or active (accelerators) role?

& All CRs from star clusters? —> follow the physics!
& Most of them from SNR inside super bubbles (abundance of CR volatiles)
& Provided dust grains are present inside super bubbles (CR refractories)

& Some of them from WTSs (22Ne)



