AT

Karlsruher Institut fir Technologie

Neural Networks for
Cosmic Ray Simulations

Pranav Sampathkumar, IAP, KIT

11th KSETA Plenary Workshop 2024



\ Overview

Motivation

Challenges

Neural Networks

Generative Neural Networks
Point Cloud Models

Our RNN based hybrid model
Neural networks for radio pulses
Conclusions



\ Motivation

The Problem

Monte Carlo (MC):
slowest part of
many physics
pipelines

Scales badly for high
energies

Context
e Current
Approximations:
Theory based

Forward physics is
important

Problem statement

e Canneural
networks be used
for data* driven
approximations ?

* data refers to output from simulations
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The Challenges

Performance Fidelity Physics
e Faster than Monte e Sensible physics e Different
Carlo Simulations approximations challenges based
on context
e Better scaling than e Shouldn’t affect e Eg Cosmicray
traditional existing pipelines. showers are

approximations larger



\ Neural Networks
Hidden

Input

e A fully connected
network is a
collection of
matrices with a
nonlinear function

e N layered network
has N-1 matrices.

e Use anoptimization
algorithm

Img source:Wikipedia
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\ Generative Adversarial Neural Networks

Generator mmmd DiSCriminator = Loss

o

e Various types of
GANs

e Basedonloss
functions and
architectures



Generative Adversarial Neural Networks

8 DELPHES
. + pile
e Various types of _ TadGraph5 aMC@NLO | DELPHE

GA N S [Butter ez al., 2019] MadGraph5 aMC

]
Di Sipio et al., 2019 MadGraph3, Pythia8 DELPHES 2
+ FASTIET
e Basedonloss Ahdida ef al 2019 Pythia8 ¥ GEANTA -
fU nCtlonS and Alanazi et al.,

2020b] | Pythia8
c [Velasco et al., 2020]
architectures
Martnez et al., 2020 8 DELPHES
particle-flow

[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES SWAE
[Choi and Lim, 2021] MadGraph5 + Pythia8 DELPHES pp — bbyy WGAN-GP

Table I: List of existing MLEGs.




Autoencoders

EE o B T

o —

e Encoder: Compresses data

e Decoder: Extracts data

e Latent Space: Compressed data



\ Autoencoders

— -

Variational Autoencoders

EE e




ID - GAN

Mix auto-encoders and
GANs

Distill the necessary
information

Encode first and then
use it with noise to
create new data

Generator does the
creation

Source: PhD Thesis, Jubna Irakkathil Jabbar, ETP, KIT

Information Distillation GAN

8 ~

9 T
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Pe — Xrew

%—}
Step 1
Figure 6.1.: It consists an encoder (q, ). a decoder (pg), a generator (G,,) and a discriminaton
C,. The training of the model is divided into the training of the VAE part anc
training of the GAN part. The noise vector consists of two different variables
s and c.
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Bounded-Information Bottleneck Autoencoder

BI B-AE Input Intermedic lt( Output

e Mix auto-encoders and -
GANs =

e Distill the necessary [xLD | D
information i) _

e Encode first and then N R T R T
use it with noise to
e Additional critics for
physics
e Decoder doesthe
creation

Source: Hadrons, Better, Faster, Stronger (arXiv:2112.09709v1) 12



Geant4

Information GAN

BIB-AE
e Mix auto-encoders and
GANs

Distill the necessary
information

Encode first and then use Hardware Simulator | Time / Shower [ms] Speed-up
it with noise to create CPU GEANT4 | 2684 + 125 x 1
new data
Additional critics for WGAN 47.923 + 0.089 % 56
physics BIB-AE 350.824 + 0.574 X8
Decoder does the
creation WGAN 0.264 + 0.002 x 10167

BIB-AE 2.051 + 0.005 x 1309

Source: Hadrons, Better, Faster, Stronger (arXiv:2112.09709v1)
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Point Clouds

9 . Energy [MeV]
e Beindependent of grid e 20

e Useunordered list of
particles in momentum
space

e Helps the sparsity of
the image

e Directly generate the
coordinates of N points

Img source:CaloClouds (arXiv:2305.04847v2) 15



A swap between point clouds
doesn’t change the information

GAN architectures were developed which
account for this swap.
e EPIC-GAN: Equivariant Point Cloud
GANs
e MP-GAN: Message passing GANs

Ref:arXiv:2301.08128v3

GANSs on Point Clouds

wM

(x107%)
Truth 0.3+0.1

Gluon  MP-GAN 0.5+0.1
EPiC-GAN 0.3 £0.1
Truth 0.3x0.1
MP-GAN 0.5+ 0.1
EPiC-GAN 0.5 £ 0.1
Truth 0.2+0.1
MP-GAN 0.5 +£0.1
EPiC-GAN 0.5 £0.1

Jet class Model

0:3+0:1

49+0.3
4.0 + 0.4

0.3+0.1

W]EF P

(x107°)
0.3+0.3
0.6 +£0.3
0.4 +0.2
0.3+0.3
0.7 + 0.4
0.8 £ 0.4
0.6 +0.5
1.0 £ 0.7
1.7+ 0.3

FPND

0.07 £0.01
0.13 = 0.02
1.01 £ 0.07
0.02 +£ 0.01
0.36 = 0.02
0.02 £ 0.01

0.35 = 0.04
0.31 £+ 0.03

Table 2: Evaluation scores for the JetNet30 dataset. The truth values are a compari-
son between the test and training set, which reflect the size of statistical fluctuations.
The MP-GAN scores were calculated with the trained models from Ref. [24] using the
same statistics as the EPiC-GAN. Lower is better for all scores.
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Flow Based Models

Img source:Wikipedia

Flow

— Loss

2k ~ P (2k)
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Flow Based Models

O T

Simulator 10 — 100 GeV [ms] | Speedup

Gusne? 4081.53 +169.92
(30 x 30 x 30)

L2LFLows 1| 19617.24 +894.08
(30 x 10 x 10) 10 3130.25 £104.74
100 1395.52 + 26.55

1000 1338.13 + 24.03

Img source: L2LFlows, arXiv:2302.11594v2



Diffusion Models

o R

Img source: L2LFlows, arXiv:2302.11594v2
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Diffusion Models

Hardware Simulator

CPU GEANT4

CarLoCLoubs
CarLoCroups Il
CaroCroups II (CM)

CarLoCLoups

CarLoCroups 11
CaroCroubs II (CM)

Img source: L2LFlows, arXiv:2302.11594v2

NFE

o I

Batch Size | Time / Shower [ms] Speed-up

3914.80 + 74.09 X1

3146.71 + 31.66 ¥1:2
651.68 +4.21 x6.0
84.35 £+ 0.22 x46

2491 +0.72 x157
6.12 +£0.13 X640
2.09 +£0.13 x1873
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X(g/cm?)

Sequential model for cosmic
ray showers

Solve
Physics
ODEs
Eg:CONEX

\

n(X +
AX)
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X(g/cm?)

Sequential model for cosmic
ray showers

Fully

Connected
Neural
Network

N

n(X +
AX)
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Approximate a single step in shower
generation using a neural network

Takes distributions at height X and gives
distributions at height X + AX

Electron Distribution Positron Distribution Photon Distribution

o0’ -
R\t a
pat

__:‘-_,__..-—--.—.,_
05—

X(g/em?) X(g/em?) X(g/em?)

n(X,E = 1073 GeV): NN n(X,E = 1073 GeV): CONEX —— n(X,E =103 GeV): Ratio

n(X,E = 10% GeV): NN n(X, E = 10? GeV): CONEX n(X, E = 10?2 GeV): Ratio 0

n(X,E =107 GeV): NN n(X, E =107 GeV): CONEX = n(X,E =107 GeV): Ratio We get alren nd S%

error. 24




The lack of the hidden state makes the
network memoryless . X’[ FCNN Dé[ FCNN ’X’[ FCNN ]X’

Emulates the nature of simple MC process ;
! !

Xt Xir

Use the model iteratively without using a i 1
hidden state @

T T T

Trained in sequences of 10 steps

Electron Distribution Positron Distribution Photon Distribution

Generated the entire
o shower using our

Pt
-

.

e . sequential network
e et T lteratively generate
) b shower from initial
conditions
Maximum error is
around 10%

LI | X ¥ LI L * ) LIl | % X LN L ¥ o LI L LT |
102 : 102 : 102
X(g/em?) X(g/em?) X(g/cm?)
= n(X,E=10"2 GeV): NN =  n(X,E =102 GeV): CONEX = n(X,E =10"3 GeV): Ratio

n(X,E = 10% GeV): NN =  n(X,E =10% GeV): CONEX n(X, E = 102 GeV): Ratio
= n(X,E =107 GeV): NN = n(X,E =107 GeV): CONEX = n(X,E =107 GeV): Ratio




Radio Simulations

EM part of CR showers
produces radio pulses

Radio pulses of CR
showers don’t have MC
fluctuations

Can be approached with
more traditional
techniques

0.0004

0.0002

(.0000
=

—0.0002

—0.0004

—0.0006

Geomagnetic Effect for Antenna 14
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Conclusions

Neural networks for shower simulations: exciting new field

Advancements in novel architectures for physics use cases.

For CR Physics, using a memory less recurrent neural network shows promise
Network is not linear, doesn'’t capture fluctuations when used in a hybrid manner
Use neural network for radio pulses.

Outlook

Hardcode the linearity into the network

Stay robust for early fluctuations

Do the same in 3D.

Get the energy footprint correct for radio pulses.

Ref: PoS(ICRC2023)515
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Thank You
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Figure 1: The collider physics coordinate system defining (pr. 7, ¢) (left). The three jet classes in
our dataset (right). Gluon (g) and light quark (q) jets have simple topologies, with q jets generally
containing fewer particles. Top quark (t) jets have a complex three-pronged structure. Shown also are
the relative angular coordinates 77" and ¢, measured from the jet axis.
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Hardware

Simulator Batch Size

Time / Shower [ms] Speed-up

CPU

GEeANT4

CaLoCLoubs
CarLoCroups 11
CaroCroups II (CM)

CaroCLoubps
CarLoCroups Il
CaLoCroups II (CM)

3914.80 + 74.09 x1
3146.71 + 31.66

651.68 +4.21

84.35 +0.22

2491 + 0.72
6.12 + 0.13

2.09 £0.13

Simulator

W ]Nhn 5
(x107%)

1 E, is/ Euu
W,

(x107%) (x107%)

,-Eluz-:
W,

(x1073)

‘,IM 1.X
W,

(x1073)

W ‘f adial

2y
1 - “I
(x1077)

(x107%)

Jmy 7
w2

(x107%)

GeanT4

CaroCrouns
CaroCroups 11
CaroCroups II (CM)

0702 08x02 09+04
25+03
3605

6.1 £0.7

11.4+04
264+ 04
9.8 £ 0.5

159 + 0.7
15.3 + 0.6
16.0 + 0.7

0708 07x01 0901 1.1x03
20+13
37x1.6

2014

38814
116x1.5
83+19

40+04
24+04
3004

87+03
7.6 +0.2
95+06

0.9+03

1.4 +05
39+04

1.2+ 0.5

Img source: CaloClouds, arXiv:2305.04847v2
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