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Motivation

The Problem

● Monte Carlo (MC): 

slowest part of 

many physics 

pipelines

● Scales badly for high 

energies

Context

● Current 

Approximations: 

Theory based

● Forward physics is 

important

Problem statement

● Can neural 
networks be used 

for data* driven 
approximations ?

* data refers to output from simulations 
here
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The Challenges

Performance

● Faster than Monte 

Carlo Simulations 

● Better scaling than 

traditional 

approximations

Fidelity

● Sensible physics 

approximations

● Shouldn’t affect 

existing pipelines.

Physics

● Different 
challenges based 

on context 

● Eg, Cosmic ray 

showers are 

larger
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Neural Networks

● A fully connected 
network is a 
collection of 
matrices with a 
nonlinear function

● N layered network 
has N-1 matrices. 

● Use an optimization 
algorithm

Img source:Wikipedia 5
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Generative Adversarial Neural Networks

Generator Discriminator Loss

DataNoise

● Various types of 
GANs

●  Based on loss 
functions and 
architectures
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Autoencoders

Encoder Decoder Loss

DataData

Latent Space

9

● Encoder: Compresses data

● Decoder: Extracts data

● Latent Space: Compressed data



Autoencoders

Encoder Decoder Loss

DataData

Latent Space

Encoder Decoder Loss

DataData

Latent Space

Noise

Variational Autoencoders

Loss
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Information Distillation GAN

ID - GAN
● Mix auto-encoders and 

GANs

● Distill the necessary 
information

● Encode first and then 
use it with noise to 
create new data

● Generator does the 
creation

Source: PhD Thesis, Jubna  Irakkathil Jabbar, ETP, KIT 11



Bounded-Information Bottleneck Autoencoder

BIB-AE
● Mix auto-encoders and 

GANs

● Distill the necessary 
information

● Encode first and then 
use it with noise to 
create new data

● Additional critics for 
physics

● Decoder does the 
creation

Source: Hadrons, Better, Faster, Stronger (arXiv:2112.09709v1) 12
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Point Clouds

● Be independent of grid

● Use unordered list of 
particles in momentum 
space

● Helps the sparsity of 
the image

● Directly generate the 
coordinates of N points 

Img source:CaloClouds (arXiv:2305.04847v2) 15



GANs on Point Clouds

A swap between point clouds 
doesn’t change the information

GAN architectures were developed which 
account for this swap.
● EPiC-GAN: Equivariant Point Cloud 

GANs
● MP-GAN: Message passing GANs

Ref:arXiv:2301.08128v3 16



Flow Based Models

Inverse Flow Flow Loss

DataData

Latent Space

Img source:Wikipedia 17



Flow Based Models

Flow Inverse Flow Loss

DataData

Latent Space

DenoiseLatent Space

Img source: L2LFlows, arXiv:2302.11594v2 18



Diffusion Models
Diffuse Denoise Loss

DataData

Latent Space

Img source: L2LFlows, arXiv:2302.11594v2 19
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DataData
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Sequential model for cosmic 
ray showers

X(g/cm2) 

n(X)

n(X + 
𝚫X)

Solve 
Physics 
ODEs

Eg:CONEX
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n(X)

n(X + 
𝚫X)

Fully 
Connected 

Neural 
Network 

Sequential model for cosmic 
ray showers

X(g/cm2) 
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We get around 5% 
error.

● Approximate a single step in shower 
generation using a neural network

● Takes distributions at height X and gives 
distributions at height X + 𝚫X

n(X) n(X + 𝚫X)Model
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● Generated the entire 
shower using our 
sequential network

● Iteratively generate 
shower from initial 
conditions

● Maximum error is 
around 10%

● Use the model iteratively without using a 
hidden state

● The lack of the hidden state makes the 
network memoryless 

● Emulates the nature of simple MC process
● Trained in sequences of 10 steps
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Radio Simulations
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● EM part of CR showers 
produces radio pulses

● Radio pulses of CR 
showers don’t have MC 
fluctuations

● Can be approached with 
more traditional 
techniques



Conclusions

● Neural networks for shower simulations: exciting new field
● Advancements in novel architectures for physics use cases.
● For CR Physics, using a memory less recurrent neural network shows promise 
● Network is not linear, doesn’t capture fluctuations when used in a hybrid manner
● Use neural network for radio pulses.

Outlook
● Hardcode the linearity into the network
● Stay robust for early fluctuations
● Do the same in 3D. 
● Get the energy footprint correct for radio pulses. 

Ref: PoS(ICRC2023)515 27



Thank You
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Diffusion Models
Diffuse Denoise Loss

DataData

Latent Space

Img source: CaloClouds, arXiv:2305.04847v2 30
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