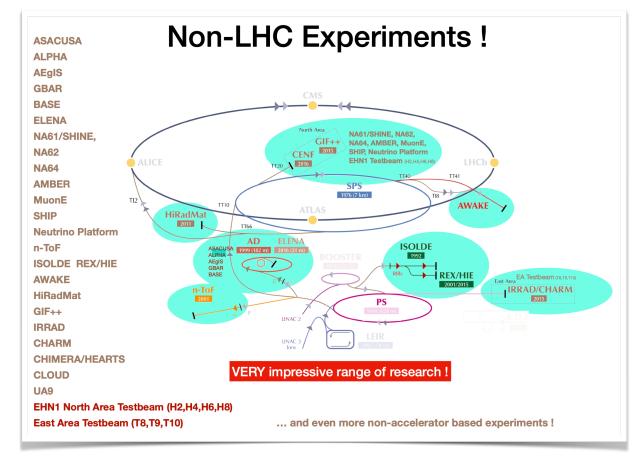

# **Reinforcement Learning at CERN's accelerators**

V. Kain, N. Bruchon, S. Hirlander, N. Madysa, B. Rodriguez Mateos, M. Schenk, M. Remta, F. Velotti, J. Wulff



### **The CERN accelerator complex**

The CERN accelerator complex Complexe des accélérateurs du CERN




**b**  $H^-$  (hydrogen anions) **b** p (protons) **b** ions **b** RIBs (Radioactive Ion Beams) **b** n (neutrons) **b**  $\overline{p}$  (antiprotons) **b** e (electrons) **b**  $\mu$  (muons)

### LHC and non-LHC physics



From last week's Chamonix Accelerator Performance workshop: **many, many different beams!** 



RL@Salzburg, V. Kain, 05-Feb-2024



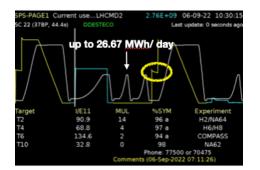
### Flexibility comes with a price...

Summary talk Injector and Experimental Facility Workshop (IEF) 2021

2. Address reproducibility and availability

- Availability OK, under control of Groups. Reproducibility is critical concern with increasing flexibility and multi-destination operation
- Transmission problems and instability in beam delivery in many locations.
  "Need more time in 2022" 
   Aave to ensure this is there (add in schedule?) #A
- Addressing reproducibility relies on many factors including equipment, accelerator modelling and high-level controls approach

Other input from IEF'21


 $\rightarrow$  Current **beam scheduling** has severe impact on resources needed to run accelerators and on efficiency

\* Statistics: 20-100 clicks to change supercycle = 2-25 min; 40-60 times/24 h

Input from JAPW'22

 $\rightarrow$  Hysteresis is severe limitation for efficiency and flexibility in most machines, current mitigation methods wasting energy

 $\ast~$  ~ 15 % of yearly cost of SPS fixed target cycle for "waste" cycles and quasidegauss Cycle MD1





### 7 recommendations $\rightarrow$ Automating exploitation

| <b>CERN</b><br>Esplanade des Particules 1<br>P.O. Box<br>1211 Geneva 23 Switzerland | EMDS NO.REV.VALIDITY29225141.0RELEASED |
|-------------------------------------------------------------------------------------|----------------------------------------|
| CERN                                                                                | REFERENCE 2922514                      |
|                                                                                     | Date: July 28, 2023                    |
| F                                                                                   | PROJECT REPORT                         |
|                                                                                     |                                        |
| Efficiency                                                                          | Think Tank Report                      |

- 1. Hysteresis compensation
- 2. Automatic and dynamic beam scheduling
- 3. Automatic LHC filling
- 4. Auto-pilots
- 5. Automatic fault analysis, recovery and prevention
- 6. Automatic testing and sequencing
- 7. Automatic parameter optimisation



### 7 recommendations $\rightarrow$ Automating exploitation

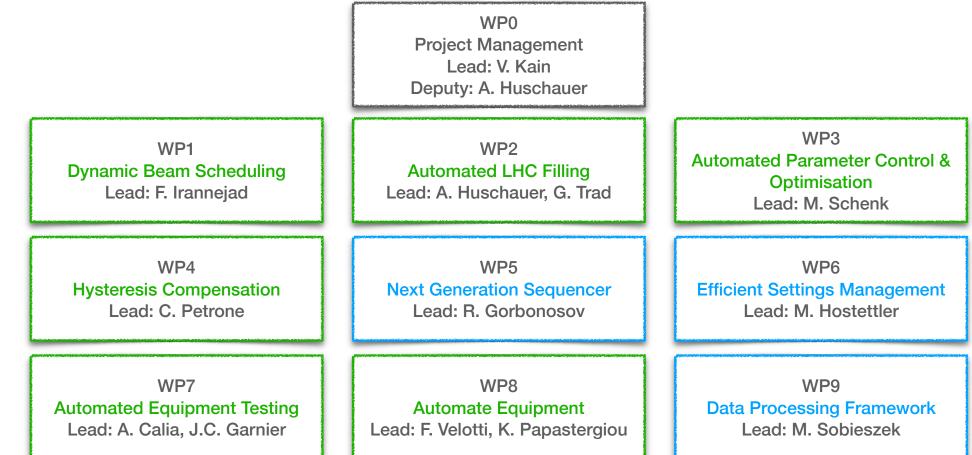
| <b>CERN</b><br>Esplanade des Particules 1<br>P.O. Box<br>1211 Geneva 23 Switzerland | EMDS NO.REV.VALIDITY29225141.0RELEASED |
|-------------------------------------------------------------------------------------|----------------------------------------|
| CERN                                                                                | REFERENCE<br>2922514                   |
|                                                                                     | Date: July 28, 2023                    |
| Р                                                                                   | ROJECT REPORT                          |
|                                                                                     |                                        |
| Efficiency                                                                          | Think Tank Report                      |

| 1. Hysteresis compensation                           | $\rightarrow$ Fully automated standard physics |  |
|------------------------------------------------------|------------------------------------------------|--|
| 2. Automatic and dynamic beam scheduling             | operation                                      |  |
| 3. Automatic LHC filling                             |                                                |  |
| 4. Auto-pilots                                       |                                                |  |
| 5. Automatic fault analysis, recovery and prevention |                                                |  |
| 6. Automatic testing and sequencing                  | ightarrow Goal: reduce commissioning           |  |
| 7. Automatic parameter optimisation                  | time by 50 %                                   |  |



### 7 recommendations $\rightarrow$ Automating exploitation

| <b>CERN</b><br>Esplanade des Particules 1<br>P.O. Box<br>1211 Geneva 23 Switzerland | EMDS NO.REV.VALIDITY29225141.0RELEAS  |  |
|-------------------------------------------------------------------------------------|---------------------------------------|--|
| CERN                                                                                | REFERENCE <b>2922514</b>              |  |
|                                                                                     | Date: July 28, 2023<br>PROJECT REPORT |  |
|                                                                                     | Think Tank Report                     |  |

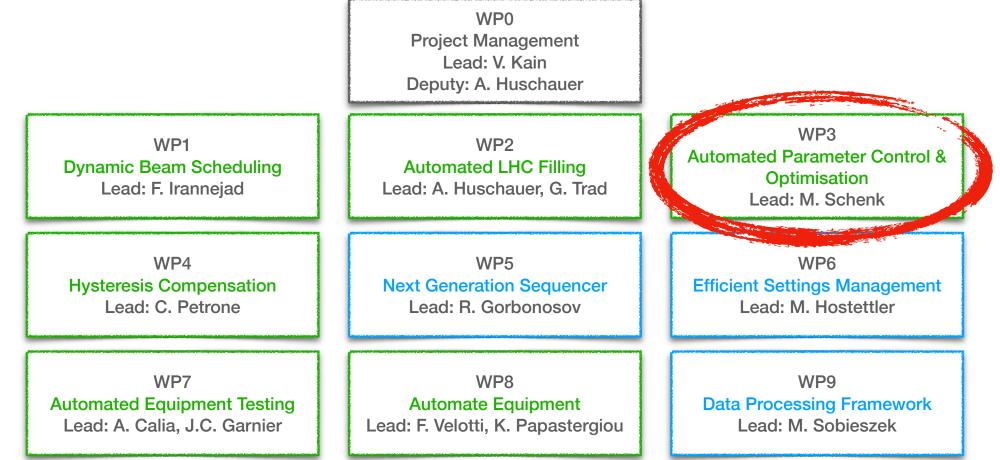

| AI Hysteresis compensation                                  | ightarrow Fully automated standard physics |  |
|-------------------------------------------------------------|--------------------------------------------|--|
| 2. Automatic and dynamic beam scheduling                    | operation                                  |  |
| AI Automatic LHC filling                                    |                                            |  |
| AI Auto-pilots                                              |                                            |  |
| <b>AI</b> Automatic fault analysis, recovery and prevention |                                            |  |
| 6. Automatic testing and sequencing                         | ightarrow Goal: reduce commissioning       |  |
| AI Automatic parameter optimisation                         | time by 50 %                               |  |

### **Efficient Particle Accelerators (EPA) project**

CERN

Approved in autumn 2023 after pre-study in Efficiency Think Tank (ETT)

10 work packages: ETT recommendations and controls infrastructure evolution.




### **Efficient Particle Accelerators (EPA) project**



Approved in autumn 2023 after pre-study in Efficiency Think Tank (ETT): project length 5 years

10 work packages: ETT recommendations and controls infrastructure evolution.





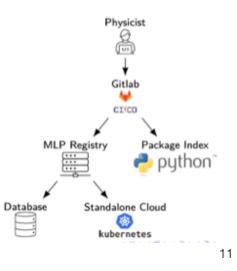
### **Automation Infrastructure - readiness**

Many classical automation concepts came from the LHC  $\rightarrow$  injectors

- \* Sequencer, high level parameter control
- \* EPA WP5 (Next Generation Sequencer) & WP6 (Efficient Settings Management) to ensure evolution for new requirements

### **Automation Infrastructure - readiness**

Many classical automation concepts came from the LHC  $\rightarrow$  injectors

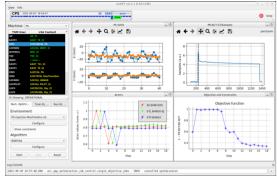

- \* Sequencer, high level parameter control
- \* EPA WP5 (Next Generation Sequencer) & WP6 (Efficient Settings Management) to ensure evolution for new requirements

Since LHC: preparing for **automation including AI/ML** - injectors on forefront

- Acc-Py (Accelerating Python): unlocked the potential of Python in CERN ATS including control rooms
  - \* Python distribution, Python Package Index, release of applications to centrally managed deployment location
- UCAP: Unified Controls Acquisition and Processing ("Virtual Device Service") → servers on-the-fly in JAVA or Python
  - \* Provides infrastructure to run "transformations" and event building
  - \* Expect evolution with EPA WP9 (Data Processing Framework)
- MLP (Machine Learning Platform): store and share AI models between users and applications of different languages








#### RL@Salzburg, V. Kain, 05-Feb-2024

### **Automation Infrastructure - readiness**

#### Generic Optimisation Framework GeOFF

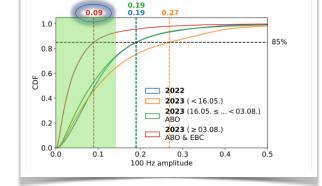
- \* Manual scans and grid scans are inefficient for multi-parameter problems  $\rightarrow$ optimisation algorithms
- \* GeOFF = easy and flexible parameter optimisation in the control room
- \* To date: > 20 parameter optimisation problems automated across complex





### **Automation Infrastructure - readiness**

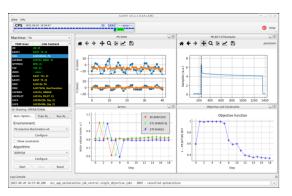
#### Generic Optimisation Framework GeOFF


- $\ast\,$  Manual scans and grid scans are inefficient for multi-parameter problems  $\rightarrow\,$  optimisation algorithms
- \* GeOFF = easy and flexible parameter optimisation in the control room
- \* To date: > 20 parameter optimisation problems automated across complex

#### Optimisation framework for auto-pilots

- \* GeOFF on UCAP  $\rightarrow$  acc-geoff4ucap released in summer 2023.
- \* Operational:  $n \times 50$  Hz control for NA spill with **GPUs on UCAP**
- \* EPA WP3 (Automated Parameter Control & Optimisation) to implement in 2024:
  - automated PS2SPS steering
  - MTE efficiency drift stabilisation

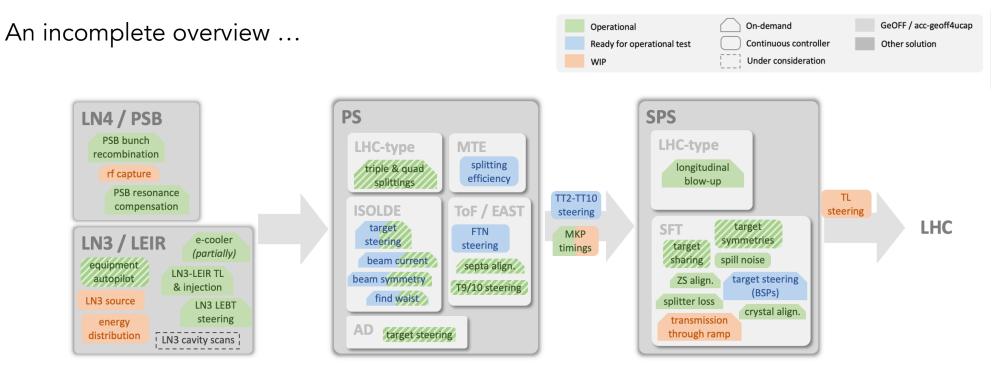
RL@Salzburg, V. Kain, 05-Feb-2024


#### 100 Hz content of NA spill with ABO and EBC





MTE island intensities to be equal with core










### Status: Auto-pilots, optimisers,...



Courtesy M. Schenk

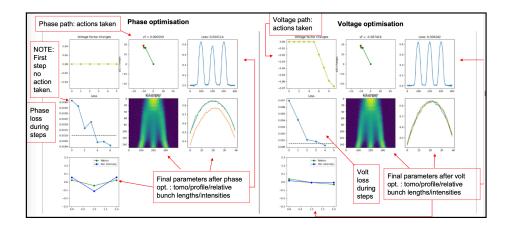
Status 2023: many optimisers and auto-pilots used operational, many added in 2023

Trends 2024: on-demand → continuous (UCAP) | some new auto-pilots

**Until end of run 3:** automation of all typical optimisation and continuous control problems RL@Salzburg, V. Kain, 05-Feb-2024



# What about RL as auto-pilot?



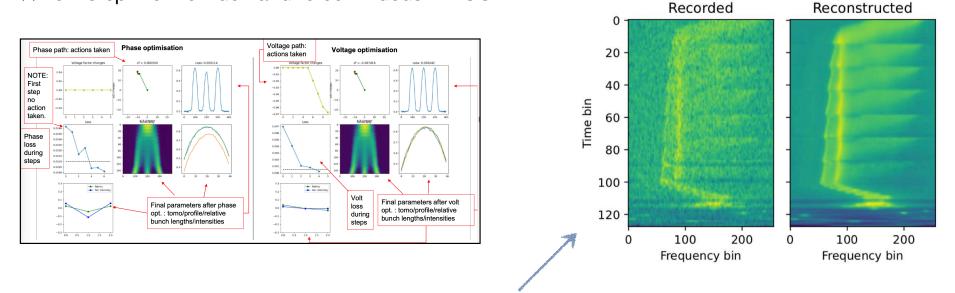

**RL agent** to correct **RF phase and voltage** to produce uniform RF splitting in PS for LHC beams

#### **\star** Trained in simulation and successfully transferred to control room $\rightarrow$ fully operational

★RL algorithm: Soft Actor-Critic (SAC); multi-agent algorithm using CNN to define initial set point

**\star**Next step: from on-demand to continuous:  $\rightarrow$  UCAP





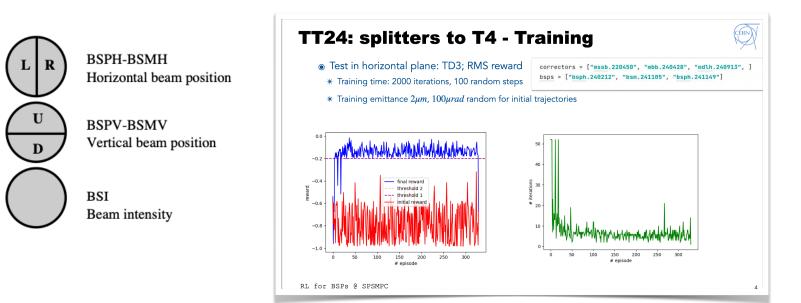

**RL agent** to correct **RF phase and voltage** to produce uniform RF splitting in PS for LHC beams

#### **\star** Trained on simulation and successfully transferred to control room $\rightarrow$ fully operational

★RL algorithm: Soft Actor-Critic (SAC); multi-agent algorithm using CNN to define initial set point

**\star**Next step: from on-demand to continuous:  $\rightarrow$  UCAP




PhD ongoing for: control ramping and debunching cavity in LINAC3 for optimal injection efficiency into LEIR, based on Schottky spectrum. Trained on data-driven dynamics RL@Salzburg, V. Kain, 05-Feb-2024

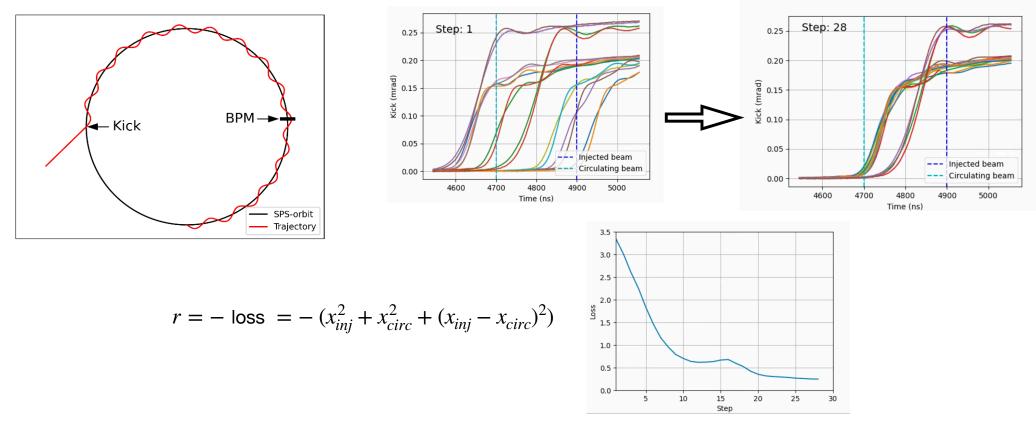


**Work in progress:** RL to steer DC beams in the CERN TT20 transfer line using split-foil secondary emission monitors (BSPs).

\* RL state  $\vec{s}$ :  $[(I_1 - I_2)_i]$  for each monitor; all intensities are normalised.

\* Our metric: symmetries per monitor:  $S = \sqrt{1 - \frac{|I_1 - I_2|}{I_1 + I_2}}$ ; Goal: S > 0.8

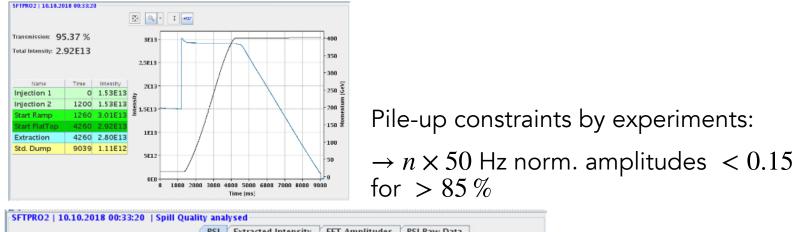


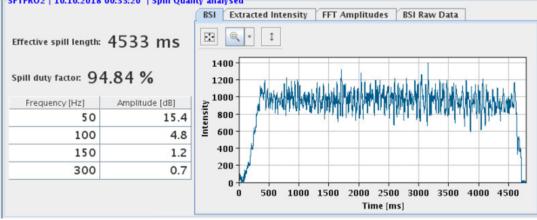

Also tested for TT23: 10 DOF Also tested: different distributions

#### $\rightarrow$ Trained on simulation!

Test of transfer foreseen for startup 2024.



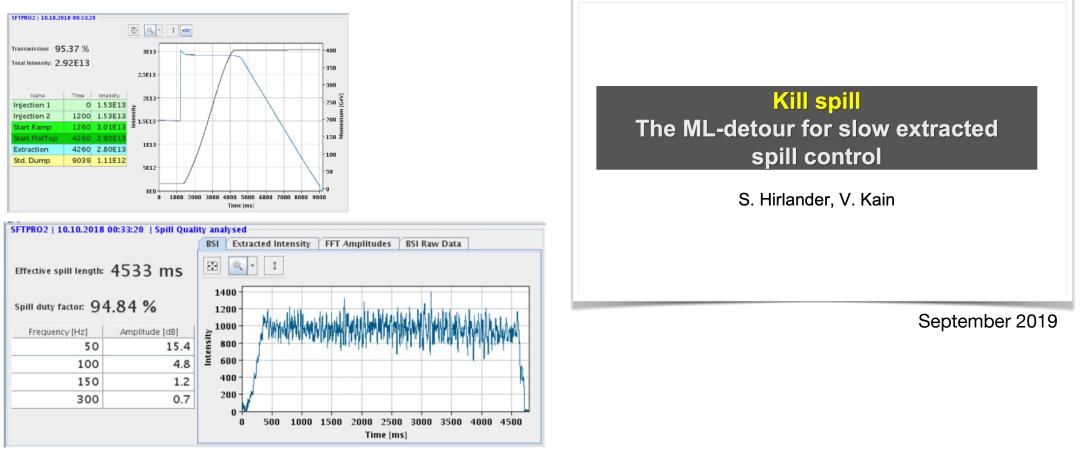

**Ready for transfer test:** Adjusting the fine delays of SPS injection kicker with RL Trained on data-driven dynamics model: PPO




### **RL** in the control room (or not)



Controlling the  $n \times 50$  Hz noise in the slow extracted spill to the North Area Experimental Hall.



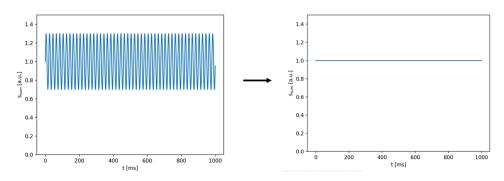



### **RL** in the control room (or not)



Controlling the  $n \times 50$  Hz noise in the slow extracted spill to the North Area Experimental Hall.



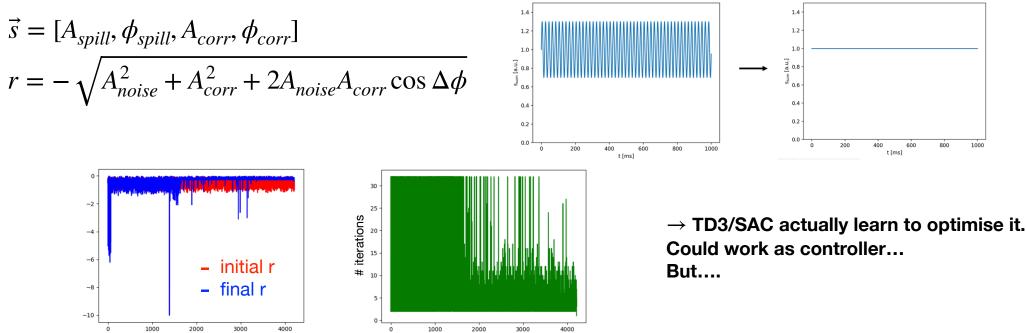



### **RL** for $n \times 50$ Hz noise control?

#### Simulated environment:

$$\vec{s} = [A_{spill}, \phi_{spill}, A_{corr}, \phi_{corr}]$$
  
$$r = -\sqrt{A_{noise}^2 + A_{corr}^2 + 2A_{noise}A_{corr}\cos\Delta\phi}$$

Spill monitor signal (2kHz) for 1 s SHiP cycle






### **RL** for $n \times 50$ Hz noise control?

#### Simulated environment:

Spill monitor signal (2kHz) for 1 s SHiP cycle



# episodes

# episodes

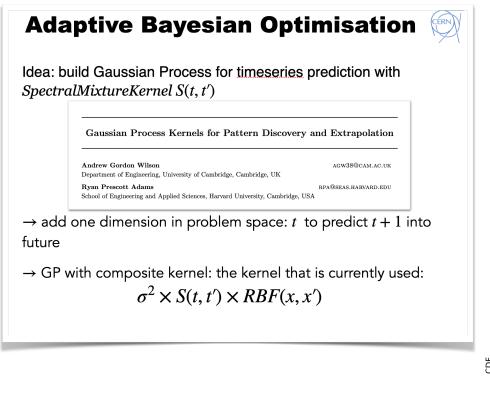


### **RL** for $n \times 50$ Hz noise control?

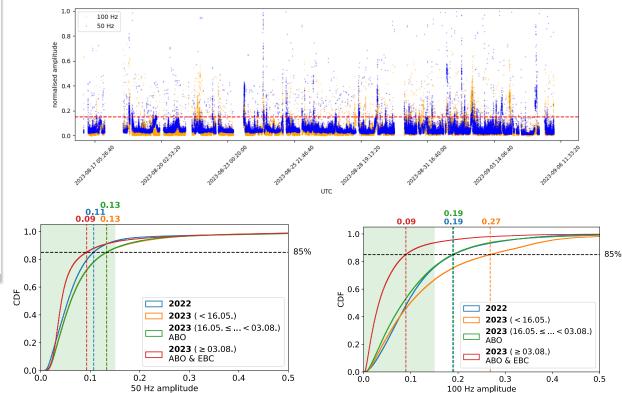
#### Simulated environment:

Spill monitor signal (2kHz) for 1 s SHiP cycle




 $\rightarrow$  Can we transfer? How does  $V_{QF}$  translate to  $A_{corr}$ ?

 $\rightarrow$  Training on the machine takes too long. Also, how to change  $A_{noise}, \phi_{noise}$ ?


### So what we did instead...



...as auto-launch numerical optimisation and analytic solution did not work well either.



**Example:** a couple of weeks during August 2023  $\rightarrow$  ABO tracks well. Some issues: controller lock-up due to shared GPU; "exploration" spikes  $\rightarrow$  2024 proximal biasing





### **RL** in the control room: observations

 Few RL based controllers compared to many optimisation problems solved with blackbox optimisation algorithms\*



### **RL** in the control room: observations

- Few RL based controllers compared to many optimisation problems solved with blackbox optimisation algorithms\*
- None of the RL algos in the control room were trained on the machine!

 $* \rightarrow simulation$ 

- \* Data-driven dynamics  $\rightarrow$  dynamics "easier" to learn than policy from cold. Offline RL?
  - ✤ E.g. no exploration issues,...

## CERN

### **RL** in the control room: observations

- Few RL based controllers compared to many optimisation problems solved with blackbox optimisation algorithms\*
- None of the RL algos in the control room were trained on the machine!

 $* \rightarrow simulation$ 

- \* Data-driven dynamics  $\rightarrow$  dynamics "easier" to learn than policy from cold. Offline RL?
  - ✤ E.g. no exploration issues,...

• Reasons?

- \* States, intuition for dynamics (often) missing.
  - How far do we get with POMDPs?
- \* RL not sample-efficient enough
  - Solutions are  $\rightarrow$  GP-MPC, MBRL including physics,...
  - Offline RL?

### **RL** in the control room: observations

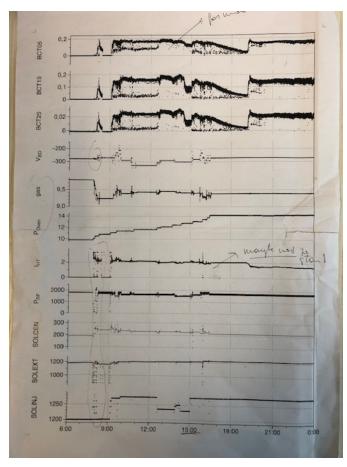
- Few RL based controllers compared to many optimisation problems solved with blackbox optimisation algorithms\*
- None of the RL algos in the control room were trained on the machine!

 $\ast \rightarrow \text{simulation}$ 

- \* Data-driven dynamics  $\rightarrow$  dynamics "easier" to learn than policy from cold. Offline RL?
  - E.g. no exploration issues,...
- Reasons?
  - \* States, intuition for dynamics (often) missing.
    - How far do we get with POMDPs?
  - \* RL not sample-efficient enough
    - Solutions are  $\rightarrow$  GP-MPC, MBRL including physics,...
    - Offline RL?

RL@Salzburg, V. Kain, 05-Feb-2024

| PROCEEDINGS A                   | Physics-informed Dyna-Style                                    |
|---------------------------------|----------------------------------------------------------------|
| spa.royalsocietypublishing.org  | Model-Based Deep                                               |
| ropan oyalooolotypablioning.org | Reinforcement Learning for                                     |
|                                 | Dynamic Control                                                |
| Research of CrossMark           | Xin-Yang Liu $^1$ and Jian-Xun Wang $^1$                       |
| Article submitted to journal    | <sup>1</sup> Department of Aerospace & Mechanical Engineering, |
|                                 | College of Engineering, University of Notre Dame,              |
| Subject Areas:                  | Notre Dame, IN, USA                                            |


·  $\rightarrow$  Proposal for LINAC3 energy distribution control

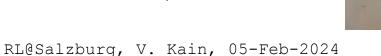
formed Dyna-Style

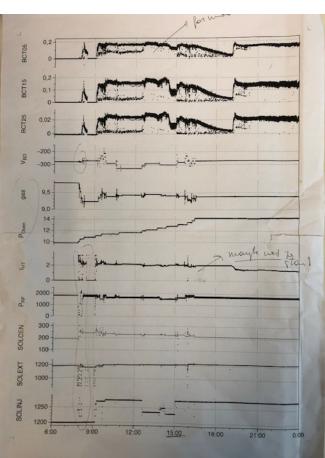


### **Offline RL?**

Collab with Simon: Tuning/stabilising the LINAC3  $Pb^{54+}$  source







### **Offline RL?**

Collab with Simon: Tuning/stabilising the LINAC3  $Pb^{54+}$  source

### LINAC3 source specialist wish list:

- behaviour cloning from historic data
- ideally zero-shot transfer, safe exploration otherwise
- no continuous control: only correct when necessary
- Additional remark: response with delay!
  - \* Different delays for different parameters







#### RL@Salzburg, V. Kain, 05-Feb-2024

Collab with Simon: Tuning/stabilising the LINAC3  $Pb^{54+}$  source LINAC3 source specialist wish list:

> BCT15 0.1

3CT25 0.02

Veso

985

Poven

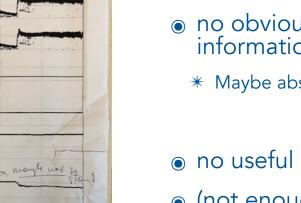
PRF

SOLCEN

OLEXT 1000

BOLINU

1000


200

12:00

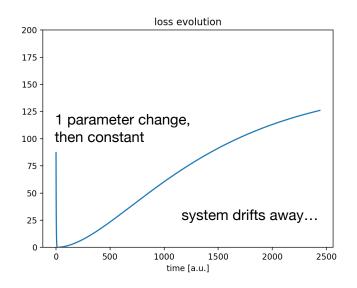
18:00

21:00

- behaviour cloning from historic data
- ideally zero-shot transfer, safe exploration otherwise
- no continuous control: only correct when necessary
- Additional remark: response with delay!
  - \* Different delays for different parameters

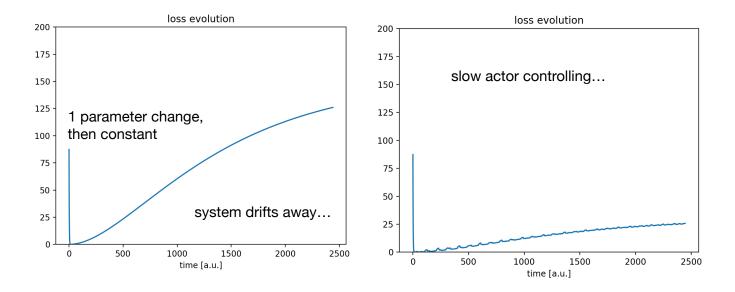


#### Simon & Verena: How to solve this?


- no obvious state information
  - \* Maybe absolute settings
- no useful simulation
- (not enough data to train "a" model)
- How to deal with different delays of actors?



### **Offline RL?**



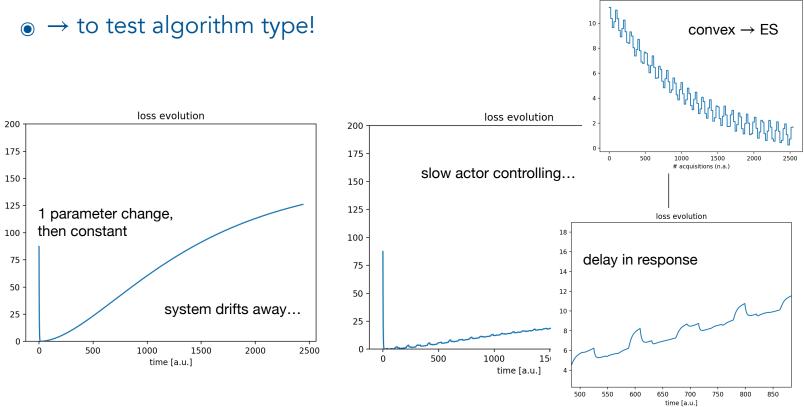

- Building toy simulation of dynamic system that changes with time
- Different actors, with delayed response; actors depend on each other
- Currently all response functions convex
- $\bullet \rightarrow$  to test algorithm type!





- Building toy simulation of dynamic system that changes with time
- Different actors, with delayed response; actors depend on each other
- Currently all response functions convex
- $\bullet \rightarrow$  to test algorithm type!

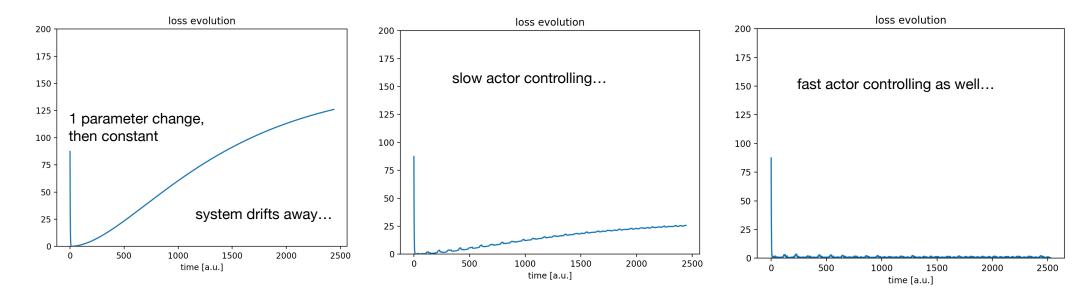



RL@Salzburg, V. Kain, 05-Feb-2024



- Building toy simulation of dynamic system that changes with time
- Different actors, with delayed response; actors depend on each other

slow actor evolution


• Currently all response functions convex



RL@Salzburg, V. Kain, 05-Feb-2024



- Building toy simulation of dynamic system that changes with time
- Different actors, with delayed response; actors depend on each other
- Currently all response functions convex
- $\bullet \rightarrow$  to test algorithm type!





# $\rightarrow$ simulations!!

### Conclusion



Efficient Particle Accelerators (EPA) project has recently been put in place

to improve on various efficiency limiting aspects through **automation** and also **improved modelling**.

• Including AI/ML techniques at scale

The project was given 5 years to be ready with improvements for the HL-LHC era

### Conclusion



Efficient Particle Accelerators (EPA) project has recently been put in place

to improve on various efficiency limiting aspects through **automation** and also **improved modelling**.

• Including AI/ML techniques at scale

The project was given 5 years to be ready with improvements for the HL-LHC era

EPA WP3: Reinforcement Learning will be part of the new exploitation paradigm.

### Conclusion



Efficient Particle Accelerators (EPA) project has recently been put in place

to improve on various efficiency limiting aspects through **automation** and also **improved modelling**.

• Including AI/ML techniques at scale

The project was given 5 years to be ready with improvements for the HL-LHC era

EPA WP3: Reinforcement Learning will be part of the new exploitation paradigm.

Key ingredient for RL to be adopted  $\rightarrow$  simulations of all processes and accelerators.

- Sim2real transfer: Need to get more experience with domain adaptation, adaptive agents
- Offline RL: data-driven dynamics if easily obtainable from historic data also of interest