
Practical Microsecond Real-Time Reinforcement Learning

Luca Scomparin, Michele Caselle, Andrea Santamaria Garcia, Chenran Xu, Timo Dritschler | 5-7 February 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Introduction & Motivation
Real-Time and its constraints
Why is Real-Time AI hard?

2. Alternative computing platforms

3. Challenges of reusing existing implementations

4. Real-Time RL: experience accumulator and the KINGFISHER platform

5. Is µs Real-Time RL what you need?

6. Conclusion

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

2/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Table of contents

Great data rate → lot of training data

Possibility of training online

Timing constrains become relevant!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

3/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Motivation

Great data rate → lot of training data

Possibility of training online

Timing constrains become relevant!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

3/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Motivation

Great data rate → lot of training data

Possibility of training online

Timing constrains become relevant!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

3/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Motivation

Shin and Ramanathan (1994) identify major
components:

Correctness of a computation depends not
only on the logical correctness but also on the
time at which the results are produced.

1 "time" is the most precious resource;
2 reliability is crucial;
3 environment of operation is an active

component.

Predictability is fundamental!

Three possible levels/categories:
1 hard, catastrophic consequences;
2 firm, results produced late not useful;
3 soft, later means decreasing usefulness.

Depending on environment, RL can be either one of
these!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

4/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

What is Real-Time?

Latency
Time needed to produce output after input is received

Throughput
Maximum rate at which data can be processed

R R R

WWW
PROCPROCPROC

time

Bad latency, batched

R WPROC
R WPROC

R WPROC

time

Good latency, streaming

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

5/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Latency and throughput constraints

Current ML frameworks have mainly throughput in
mind → no/little real-time optimization;

use of batched execution on GPU → not optimal
for latency;

conventional computing hardware not meant for
low-latency real-time;

it still works great for latency in the millisecond
range!

R R RR

CPU
GPU

R R RR

R R RR

Here, take some data!

CPU
GPU

PROC

PROC

PROC

PROC

PROC
PROC

Thanks!

CPU
GPU

WWWW

WWWW

WWWW

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

6/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Issues of Real-Time AI

FPGA → Field Programmable Gate Arrays

lattice of logic blocks;

"flow" of computation is user defined;

extremely low overhead;

not as high-performance as CPUs or GPUs.

Easier to enforce latency and throughput constraints!
Not as trivial to program

CLB CLBCLBCLB

IO

IO

IO

IO

IO

IO

IO

IO

IO IOIOIO

IO IO IO IO

CLB CLBCLBCLB

CLB CLBCLBCLB

CLB CLBCLBCLB

7/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

FPGAs

FPGA → Field Programmable Gate Arrays

lattice of logic blocks;

"flow" of computation is user defined;

extremely low overhead;

not as high-performance as CPUs or GPUs.

Easier to enforce latency and throughput constraints!
Not as trivial to program

LUT
I1

I2

I3

I0

FF

CLK

RST

OUT

7/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

FPGAs

FPGA → Field Programmable Gate Arrays

lattice of logic blocks;

"flow" of computation is user defined;

extremely low overhead;

not as high-performance as CPUs or GPUs.

Easier to enforce latency and throughput constraints!
Not as trivial to program

CLB CLBCLBCLB

PLL RAMCLBCLB

PLL RAMCLBCLB

CLB CLBDSPDSP

IO

IO

IO

IO

IO

IO

IO

IO

IO GTY GTY IO

IO IO IO IO

7/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

FPGAs

From Rothmann and Porrmann (2022):

GPUs good for training of DNNs;

RL algorithms use many GPU kernels with little
computation;

increased launch over-head.

CLB CLBCLBCLB

PLL RAMCLBCLB

PLL RAMCLBCLB

CLB CLBDSPDSP

IO

IO

IO

IO

IO

IO

IO

IO

IO GTY GTY IO

IO IO IO IO

8/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

FPGAs vs GPUs

Different computing platforms → different benefits

Heterogeneous combine CPUs, FPGAs and "GPUs"

An example, AMD Versal:

combines FPGAs and ARM CPUs;

AI Engine array for heavy multiplication workloads;

Network-on-Chip interconnect;

high-speed interfaces.

These computation unit work in synergy and share
memory!

ARM CPU

RT CPU FPGA

AI

Engine D
D

R
1

0
0

 G
b

E
P

C
Ie

NoC

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

9/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Heterogeneous platforms

Instructions of different platforms are different!

There are several NN implementations. BUT:

mostly throughput optimized;

targeting different platforms;

real-time not in mind.

Most NN deployment to FPGA quantize → effect on RL
algorithms?

Would be cool to directly translate agents into real-time, but we are
not there yet.

An ONNX middle-layer for low-latency could be the solution!

1×64

obs

Cast

Flatten

Gemm

B〈16×64〉

C〈16〉

Relu

Gemm

B〈8×16〉

C〈8〉

Relu

Gemm

B〈16×64〉

C〈16〉

Relu

Gemm

B〈8×16〉

C〈8〉

Relu

Gemm

B〈1×8〉

C〈1〉

Gemm

B〈1×8〉

C〈1〉

10/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Why can’t we reuse code?

Instructions of different platforms are different!

There are several NN implementations. BUT:

mostly throughput optimized;

targeting different platforms;

real-time not in mind.

Most NN deployment to FPGA quantize → effect on RL
algorithms?

Would be cool to directly translate agents into real-time, but we are
not there yet.

An ONNX middle-layer for low-latency could be the solution!
1

1×1

Gemm

B〈1×8〉

C〈1〉

Exp

input〈1〉

Mul

A〈1×1〉

Shape

ConstantOfShape

Add

Add

Shape

Expand

Shape

Expand

RandomNormalLike

input〈1×1〉

Mul

A〈1×1〉

Add

B〈1×1〉

Mul

Add

Pow

Y = 2

Log

Sub

Pow

Y = 2

Neg
Mul

B = 2

Div

Sub

Sub

B = 0.91893851…

ReduceSum

axes〈1〉

Reshape

shape〈2〉

62

60

10/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Why can’t we reuse code?

#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

We need fast! What is the CPU doing?

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs
#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs
#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs
#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs Optimized (-O3 -march=native): exec time 8.8 µs
result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

result[j] += data[j] * coeffs[j+i*mat_N];

.L19:

vmovaps ymm1, ymm0

vbroadcastss ymm0, DWORD PTR [rdx]

add rax, 256

vfmadd231ps ymm8, ymm0, YMMWORD PTR -256[rax]

... x5

vfmadd231ps ymm2, ymm0, YMMWORD PTR -64[rax]

add rdx, 4

vfmadd132ps ymm0, ymm1, YMMWORD PTR -32[rax]

cmp rcx, rax

jne .L19

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs Optimized (-O3 -march=native): exec time 8.8 µs
result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

result[j] += data[j] * coeffs[j+i*mat_N];

.L19:

vmovaps ymm1, ymm0

vbroadcastss ymm0, DWORD PTR [rdx]

add rax, 256

vfmadd231ps ymm8, ymm0, YMMWORD PTR -256[rax]

... x5

vfmadd231ps ymm2, ymm0, YMMWORD PTR -64[rax]

add rdx, 4

vfmadd132ps ymm0, ymm1, YMMWORD PTR -32[rax]

cmp rcx, rax

jne .L19

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs Optimized (-O3 -march=native): exec time 8.8 µs
result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

result[j] += data[j] * coeffs[j+i*mat_N];

.L19:

vmovaps ymm1, ymm0

vbroadcastss ymm0, DWORD PTR [rdx]

add rax, 256

vfmadd231ps ymm8, ymm0, YMMWORD PTR -256[rax]

... x5

vfmadd231ps ymm2, ymm0, YMMWORD PTR -64[rax]

add rdx, 4

vfmadd132ps ymm0, ymm1, YMMWORD PTR -32[rax]

cmp rcx, rax

jne .L19

≈ 30 improvement by doing 8 mult per cycle!

Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Not optimized: exec time 280 µs Optimized (-O3 -march=native): exec time 8.8 µs
result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

result[j] += data[j] * coeffs[j+i*mat_N];

.L19:

vmovaps ymm1, ymm0

vbroadcastss ymm0, DWORD PTR [rdx]

add rax, 256

vfmadd231ps ymm8, ymm0, YMMWORD PTR -256[rax]

... x5

vfmadd231ps ymm2, ymm0, YMMWORD PTR -64[rax]

add rdx, 4

vfmadd132ps ymm0, ymm1, YMMWORD PTR -32[rax]

cmp rcx, rax

jne .L19

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!

11/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Optimizations on x86: what the compiler does for you

Do these free optimizations work also for the Versal AI Engines?

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

12/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

AI Engine compiler

for (int i = 0; i < 64; i++)

for (int j = 0; j < 64; j++)

res[j] += data[i] * coeffs[j+i*64];

NOP; LDB r5, [sp, #-12]; MUL r2, r6, r7

NOP; ASHL r1, r13, r9

NOP; MUL r5, r12, r5

ZE.16 r0, r2

NOP; MUL r13, r5, r13

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

12/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

AI Engine compiler

v8float* restrict data_v8 = (v8float*) data;

v8float* restrict coeffs_v8 = (v8float*) coeffs;

v8float* restrict res_v8 = (v8float*) res;

for (int i8 = 0; i8 < 8; i8++)

for (int el = 0; el < 8; el++)

for (int j8 = 0; j8 < 8; j8++)

res_v8[j8] = fpmac(

res_v8[j8],

data_v8[i8],

el,

0x0,

coeffs_v8[j8+el*8+i8*64],

0x0,

0x76543210

);

1 VLDA wd1, [sp, #-64]; NOP; VMOV wd1, wr1;

VFPMAC wd1, r5, wd1, ya, r11, cl2, wc0, #0, cl0,

#0, cl1

↪→

↪→

2 VLDA wc0, [p5], m0; NOP; VMOV wr1, wr2

3 NOP; NOP; VMOV wr2, wd1;

VFPMAC wr3, r0, wr3, ya, r11, cl2, wc1, #0, cl0,

#0, cl1

↪→

↪→

4 NOP; NOP; NOP;

VFPMAC wr2, r2, wr2, ya, r11, cl2, wc1, #0, cl0,

#0, cl1

↪→

↪→

5 NOP; NOP; VLDA.SPIL wd1, [sp,

#-160]; VFPMAC wd1, r1, wd1, ya, r11, cl2, wc0,

#0, cl0, #0, cl1

↪→

↪→

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

12/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

AI Engine compiler

v8float* restrict data_v8 = (v8float*) data;

v8float* restrict coeffs_v8 = (v8float*) coeffs;

v8float* restrict res_v8 = (v8float*) res;

for (int i8 = 0; i8 < 8; i8++)

for (int el = 0; el < 8; el++)

for (int j8 = 0; j8 < 8; j8++)

res_v8[j8] = fpmac(

res_v8[j8],

data_v8[i8],

el,

0x0,

coeffs_v8[j8+el*8+i8*64],

0x0,

0x76543210

);

Conclusion
Specialized optimization required! The compiler does
not save you!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

12/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

AI Engine compiler

Experience accumulator
Real-Time inference BUT Offline/Batched training

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

13/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

The KINGFISHER RL platform

Experience accumulator
Real-Time inference BUT Offline/Batched training

Pros:

+ "easy" real-time;

+ can use complex training algorithms;

+ can use GPUs and other accelerators;

+ training time reward definitionTM.

Cons:

- data inefficient;

- actor design is critical;

- training overhead.

M
E
M

 C
T
R

L

AIE

FPGA

HIGH SPEED

LINKS

ACTOR NN

CPU

DMA

GPU

TRAINING DATA

NN PARAMETERS

D
D

R
 M

E
M

PARAMS

TRAINING DOMAIN INFERENCE DOMAIN

CRITIC NN

ENVIRONMENT

DOMAIN

IN OUT

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

13/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

The KINGFISHER RL platform

An example: control of the microbunching instability at KARA
Environment → xi Coherent Sychrotron Radiation power each turn

Initial approach

O = {µCSR, σCSR,mtrend,AFFT max, fFFT max,∆θ}

A = {Amod, fmod}

Issue! FFT and cross-correlation needed with
O(10 µs) latency

New approach

O = {N latest xi}

A = action or delta-action

Hardware friendly! Still rich of information

Simplify problem definition with real-time Digital Signal Processing

Choose smaller models (≈ 128 fully connected neurons)

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

14/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Less is more

An example: control of the microbunching instability at KARA
Environment → xi Coherent Sychrotron Radiation power each turn

Initial approach

O = {µCSR, σCSR,mtrend,AFFT max, fFFT max,∆θ}

A = {Amod, fmod}

Issue! FFT and cross-correlation needed with
O(10 µs) latency

New approach

O = {N latest xi}

A = action or delta-action

Hardware friendly! Still rich of information

Simplify problem definition with real-time Digital Signal Processing

Choose smaller models (≈ 128 fully connected neurons)

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

14/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Less is more

An example: control of the microbunching instability at KARA
Environment → xi Coherent Sychrotron Radiation power each turn

Initial approach

O = {µCSR, σCSR,mtrend,AFFT max, fFFT max,∆θ}

A = {Amod, fmod}

Issue! FFT and cross-correlation needed with
O(10 µs) latency

New approach

O = {N latest xi}

A = action or delta-action

Hardware friendly! Still rich of information

Simplify problem definition with real-time Digital Signal Processing

Choose smaller models (≈ 128 fully connected neurons)

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

14/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Less is more

ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 = 18

15/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Example: the incredible efficiency of ReLU

ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 = 18

0 01 00 00 11 0 0 1 0

0000000...00000

0 1

15/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Example: the incredible efficiency of ReLU

ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 = 18

0 01 00 00 11 0 0 1 0

0000000...00000

0 1

Extremely fast O(ns) and parallellizable operation

15/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Example: the incredible efficiency of ReLU

ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 = 18

0 01 00 00 11 0 0 1 0

0000000...00000

0 1

Extremely fast O(ns) and parallellizable operation
On AIE ReLU(x) = max {x , 0} single instruction on 8 values

15/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Example: the incredible efficiency of ReLU

Requirements:

low-latency diagnostics & actions;

implementable policy (no µs ChatGPT, sorry)

high data production rate.

Pros & Cons:

+ no sim2real issues;

+ can directly try on environment;

+ for complex dynamics → faster than simulation;

- choice of policy is limited;

- careful observation and action design;

- fast safety measures;

- not everything can be done "fast".

READY
TO

DEPLOY!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

16/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Is Real-Time RL what you need?

µs Real-Time RL is a viable option

Its performance is problem dependent

FPGAs and Heterogeneous platforms are the key

Hardware aware problem design is fundamental

Sounds interesting? Let’s find more applications!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

17/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Conclusion

	Introduction & Motivation
	Real-Time and its constraints
	Why is Real-Time AI hard?

	Alternative computing platforms
	Challenges of reusing existing implementations
	Real-Time RL: experience accumulator and the KINGFISHER platform
	Is s Real-Time RL what you need?
	Conclusion

