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Motivation



Shin and Ramanathan (1994) identify major
components:

Correctness of a computation depends not
only on the logical correctness but also on the
time at which the results are produced.

1 "time" is the most precious resource;
2 reliability is crucial;
3 environment of operation is an active

component.

Predictability is fundamental!

Three possible levels/categories:
1 hard, catastrophic consequences;
2 firm, results produced late not useful;
3 soft, later means decreasing usefulness.

Depending on environment, RL can be either one of
these!
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What is Real-Time?



Latency
Time needed to produce output after input is received

Throughput
Maximum rate at which data can be processed
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Latency and throughput constraints



Current ML frameworks have mainly throughput in
mind → no/little real-time optimization;

use of batched execution on GPU → not optimal
for latency;

conventional computing hardware not meant for
low-latency real-time;

it still works great for latency in the millisecond
range!
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Issues of Real-Time AI



FPGA → Field Programmable Gate Arrays

lattice of logic blocks;

"flow" of computation is user defined;

extremely low overhead;

not as high-performance as CPUs or GPUs.

Easier to enforce latency and throughput constraints!
Not as trivial to program
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FPGAs



From Rothmann and Porrmann (2022):

GPUs good for training of DNNs;

RL algorithms use many GPU kernels with little
computation;

increased launch over-head.
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FPGAs vs GPUs



Different computing platforms → different benefits

Heterogeneous combine CPUs, FPGAs and "GPUs"

An example, AMD Versal:

combines FPGAs and ARM CPUs;

AI Engine array for heavy multiplication workloads;

Network-on-Chip interconnect;

high-speed interfaces.

These computation unit work in synergy and share
memory!

ARM CPU

RT CPU FPGA

AI

Engine D
D

R
1

0
0

 G
b

E
P

C
Ie

NoC

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

9/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Heterogeneous platforms



Instructions of different platforms are different!

There are several NN implementations. BUT:

mostly throughput optimized;

targeting different platforms;

real-time not in mind.

Most NN deployment to FPGA quantize → effect on RL
algorithms?

Would be cool to directly translate agents into real-time, but we are
not there yet.

An ONNX middle-layer for low-latency could be the solution!
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Why can’t we reuse code?



Instructions of different platforms are different!

There are several NN implementations. BUT:

mostly throughput optimized;

targeting different platforms;

real-time not in mind.

Most NN deployment to FPGA quantize → effect on RL
algorithms?

Would be cool to directly translate agents into real-time, but we are
not there yet.
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Why can’t we reuse code?



#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

We need fast! What is the CPU doing?

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!
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Optimizations on x86: what the compiler does for you



Not optimized: exec time 280 µs
#define mat_N 64

std::vector<float> coeffs(mat_N*mat_N);

std::vector<float> data(mat_N);

std::vector<float> result(mat_N);

...

for (int i = 0; i < mat_N; ++i) {

for (int j = 0; j < mat_N; ++j) {

result[j] += data[i] *
coeffs[j+i*mat_N];↪→

}

}

...

# result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]

mov rsi, rdx

mov rdi, rax

call _ZNSt6vectorIfSaIfEEixEm

movss xmm0, DWORD PTR [rax]

addss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR [rax], xmm0

...

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!
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Optimizations on x86: what the compiler does for you



Not optimized: exec time 280 µs Optimized (-O3 -march=native): exec time 8.8 µs
# result[j] += data[i] * coeffs[j+i*mat_N];

...

movss xmm0, DWORD PTR [rax]

mulss xmm0, DWORD PTR -1780[rbp]

movss DWORD PTR -1780[rbp], xmm0

mov eax, DWORD PTR -1764[rbp]

movsx rdx, eax

lea rax, -1616[rbp]
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...

# result[j] += data[j] * coeffs[j+i*mat_N];

.L19:

vmovaps ymm1, ymm0

vbroadcastss ymm0, DWORD PTR [rdx]

add rax, 256

vfmadd231ps ymm8, ymm0, YMMWORD PTR -256[rax]

... x5

vfmadd231ps ymm2, ymm0, YMMWORD PTR -64[rax]

add rdx, 4

vfmadd132ps ymm0, ymm1, YMMWORD PTR -32[rax]

cmp rcx, rax

jne .L19

≈ 30 improvement by doing 8 mult per cycle! Compiler made assumptions on HW!
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Do these free optimizations work also for the Versal AI Engines?
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AI Engine compiler



for (int i = 0; i < 64; i++)

for (int j = 0; j < 64; j++)

res[j] += data[i] * coeffs[j+i*64];

NOP; LDB r5, [sp, #-12]; MUL r2, r6, r7

NOP; ASHL r1, r13, r9

NOP; MUL r5, r12, r5

ZE.16 r0, r2

NOP; MUL r13, r5, r13
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AI Engine compiler



v8float* restrict data_v8 = (v8float*) data;

v8float* restrict coeffs_v8 = (v8float*) coeffs;

v8float* restrict res_v8 = (v8float*) res;

for (int i8 = 0; i8 < 8; i8++)

for (int el = 0; el < 8; el++)

for (int j8 = 0; j8 < 8; j8++)

res_v8[j8] = fpmac(

res_v8[j8],

data_v8[i8],

el,

0x0,

coeffs_v8[j8+el*8+i8*64],

0x0,

0x76543210

);

1 VLDA wd1, [sp, #-64]; NOP; VMOV wd1, wr1;

VFPMAC wd1, r5, wd1, ya, r11, cl2, wc0, #0, cl0,

#0, cl1

↪→

↪→

2 VLDA wc0, [p5], m0; NOP; VMOV wr1, wr2

3 NOP; NOP; VMOV wr2, wd1;

VFPMAC wr3, r0, wr3, ya, r11, cl2, wc1, #0, cl0,

#0, cl1

↪→

↪→

4 NOP; NOP; NOP;

VFPMAC wr2, r2, wr2, ya, r11, cl2, wc1, #0, cl0,

#0, cl1

↪→

↪→

5 NOP; NOP; VLDA.SPIL wd1, [sp,

#-160]; VFPMAC wd1, r1, wd1, ya, r11, cl2, wc0,

#0, cl0, #0, cl1

↪→

↪→
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v8float* restrict data_v8 = (v8float*) data;

v8float* restrict coeffs_v8 = (v8float*) coeffs;

v8float* restrict res_v8 = (v8float*) res;

for (int i8 = 0; i8 < 8; i8++)

for (int el = 0; el < 8; el++)

for (int j8 = 0; j8 < 8; j8++)

res_v8[j8] = fpmac(

res_v8[j8],

data_v8[i8],

el,

0x0,

coeffs_v8[j8+el*8+i8*64],

0x0,

0x76543210

);

Conclusion
Specialized optimization required! The compiler does
not save you!
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AI Engine compiler



Experience accumulator
Real-Time inference BUT Offline/Batched training
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The KINGFISHER RL platform



Experience accumulator
Real-Time inference BUT Offline/Batched training

Pros:

+ "easy" real-time;

+ can use complex training algorithms;

+ can use GPUs and other accelerators;

+ training time reward definitionTM.

Cons:

- data inefficient;

- actor design is critical;

- training overhead.
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The KINGFISHER RL platform



An example: control of the microbunching instability at KARA
Environment → xi Coherent Sychrotron Radiation power each turn

Initial approach

O = {µCSR, σCSR,mtrend,AFFT max, fFFT max,∆θ}

A = {Amod, fmod}

Issue! FFT and cross-correlation needed with
O(10 µs) latency

New approach

O = {N latest xi}

A = action or delta-action

Hardware friendly! Still rich of information

Simplify problem definition with real-time Digital Signal Processing

Choose smaller models (≈ 128 fully connected neurons)
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14/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Less is more
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ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 18
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Example: the incredible efficiency of ReLU



ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 18

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000000...00000

0 1
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Example: the incredible efficiency of ReLU



ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 18

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000000...00000

0 1

Extremely fast O(ns) and parallellizable operation
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Example: the incredible efficiency of ReLU



ReLU is easy and efficient to implement both in floating-point and integer representations

SIGN EXPONENT (8 BITS) FRACTION (23 BITS)

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 18

0 01 00 00 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000000...00000

0 1

Extremely fast O(ns) and parallellizable operation
On AIE ReLU(x) = max {x , 0} single instruction on 8 values
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Example: the incredible efficiency of ReLU



Requirements:

low-latency diagnostics & actions;

implementable policy (no µs ChatGPT, sorry)

high data production rate.

Pros & Cons:

+ no sim2real issues;

+ can directly try on environment;

+ for complex dynamics → faster than simulation;

- choice of policy is limited;

- careful observation and action design;

- fast safety measures;

- not everything can be done "fast".

READY
TO

DEPLOY!
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Is Real-Time RL what you need?



µs Real-Time RL is a viable option

Its performance is problem dependent

FPGAs and Heterogeneous platforms are the key

Hardware aware problem design is fundamental

Sounds interesting? Let’s find more applications!

Introduction & Motivation FPGAs and more Technical issues KINGFISHER µs RT RL 4U Conclusion

17/17 5-7 Feb 2024 Luca Scomparin: µs Real-Time RL Institute for Data Processing and Electronics

Conclusion
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