Exploring the Dynamics of Reinforcement Learning in Aerospace Control

Georg Schäfer

Josef Ressel Center for Intelligent and Secure Industrial Automation Department for Information Technologies and Digitalisation Salzburg University of Applied Sciences

February 7, 2024

Salzburg University of Applied Sciences

JRC ISIA

Autonomous agents

Process optimization

シック・ ヨー 《ヨ 》 《ヨ 》 《 国 》 《 ロ 》

JRC ISIA

- Autonomous agents
- Process optimization

AI4Green

- Process optimization
- Energy efficiency and cost reduction

JRC ISIA

- Autonomous agents
- Process optimization

AI4Green

- Process optimization
- Energy efficiency and cost reduction

What test system?

Requirements

- Mechatronic system
- Multiple inputs / Multiple outputs
- Non-linear system
- System model can be derived

Requirements

- Mechatronic system
- Multiple inputs / Multiple outputs
- Non-linear system
- System model can be derived

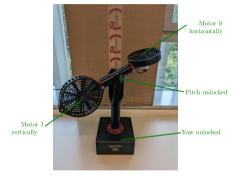


Figure: Aero 2 system (https://quanser.com)

▲ 同 ト ▲ 臣



Figure: 1 degree-of-freedom (DOF) - Pitch control (one input $u = u_0 = -u_1$, one output $y = \Theta$)

Figure: 2 DOF - Yaw and Pitch control (two inputs, two outputs)

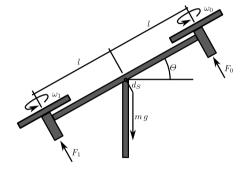
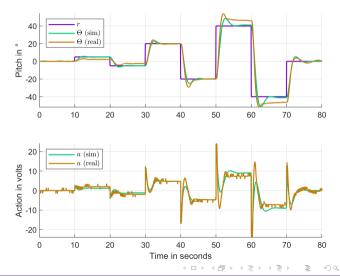


Figure: 1 DOF - Pitch control (one input $u = u_0 = -u_1$, one output $y = \Theta$)

- 1 DOF configuration, controlled variable y: pitch-angle, manipulated variable u: fan voltage (u₀ = -u₁ = u)
- Thrusters: $F_i \approx k \cdot u_i$

Beam:

$$\frac{d\Theta}{dt} = \omega$$


$$J_{p}\frac{d\omega}{dt} = \underbrace{(F_{0} - F_{1})I}_{2 k \mu I} - D_{p}\omega - mg d_{S} \sin(\Theta)$$

Baseline

Model Predictive Control

- works well in simulation
- steady state deviation on real system, depending on angle
- Can we obtain similar results via Reinforcement Learning?

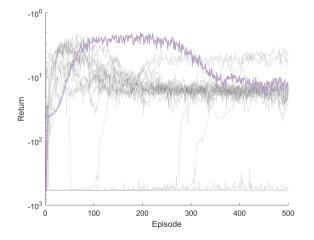
Problem Formulation

Orient the beam to a desired angle (r) by applying a voltage (u and -u) to the motors.

Problem Formulation

Orient the beam to a desired angle (r) by applying a voltage (u and -u) to the motors.

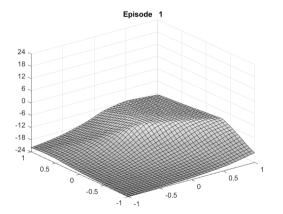
- Action: Voltage applied to the motors (u)
- **State**: Distance to the desired angle $(\Delta = \Theta r)$ and the current angular velocity $(\omega = \dot{\Theta})$
- **Reward**: Negative absolute distance to the desired angle $(-|\Delta|)$


Problem Formulation

Orient the beam to a desired angle (r) by applying a voltage (u and -u) to the motors.

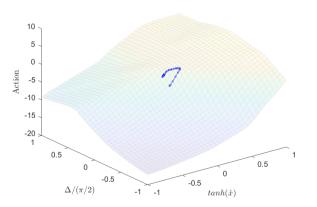
- **Action**: Voltage applied to the motors (u)
- **State**: Distance to the desired angle $(\Delta = \Theta r)$ and the current angular velocity $(\omega = \dot{\Theta})$
- **Reward**: Negative absolute distance to the desired angle $(-|\Delta|)$
- Agent: Proximal Policy Optimization (PPO)

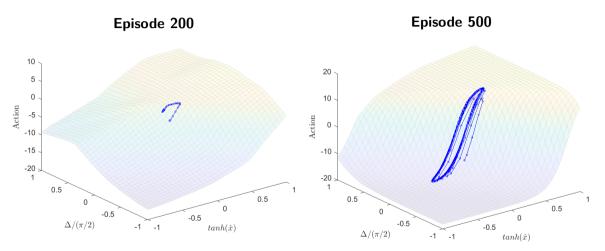
RL Training Runs (constant r)


Configurations:

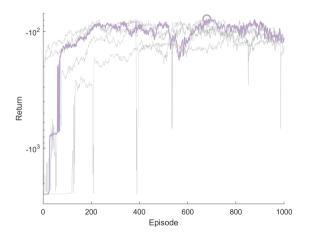
- 20 runs
- $ightarrow r = 10^{\circ}$
- Episode length = 60s

Sample time = 0.1s


Result: Max(Return) = -2.13 $|-2.13| \cdot \frac{180}{\pi} = 0.64^{\circ}$



Episode 200



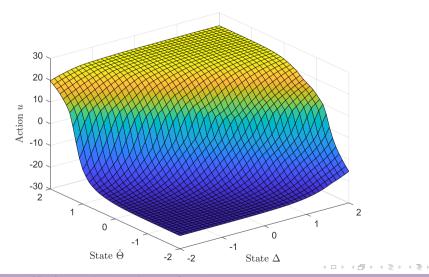
→ 伊 ト → 三

> < ∃ >

RL Training Runs (dynamic r)

Ø

Configurations:


- 5 runs
- $\blacktriangleright r = [0, -5, 5, 20, -20, 40, -40]$
- r changes every 10s
- Episode length = 80s
- ▶ Sample time = 0.1s

Result:

max(Return) = -77.93
$$\frac{|-77.93|}{800} \cdot \frac{180}{\pi} = 5.6^{\circ}$$

Policy Evaluation (dynamic r)



G. Schäfer: Exploring the Dynamics of Reinforcement Learning in Aerospace Control

Test Runs

3

Results

Using RL we can achieve a similar performance as with the MPC controller.

Outlook

- Detailed comparison to well established controller like MPC
- Adaptations in state space
- Extension to 2 DOF system