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Topics of Interest

JRC ISIA
I Autonomous agents
I Process optimization

AI4Green
I Process optimization
I Energy efficiency and cost reduction

What test system?
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System Selection

Requirements
I Mechatronic system
I Multiple inputs / Multiple outputs
I Non-linear system
I System model can be derived

Figure: Aero 2 system (https://quanser.com)
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System Selection

Figure: 1 degree-of-freedom (DOF) - Pitch control
(one input u = u0 = −u1, one output y = Θ)

Figure: 2 DOF - Yaw and Pitch control (two inputs,
two outputs)
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System Model

Figure: 1 DOF - Pitch control (one input
u = u0 = −u1, one output y = Θ)

I 1 DOF configuration, controlled variable
y : pitch-angle, manipulated variable u:
fan voltage (u0 = −u1 = u)

I Thrusters: Fi ≈ k · ui
I Beam:

dΘ
dt = ω

Jp
dω
dt = (F0 − F1) l︸ ︷︷ ︸

2 k u l

−Dpω − m g dS sin(Θ)
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Baseline

Model Predictive Control
I works well in simulation
I steady state deviation on real

system, depending on angle

Can we obtain similar results via
Reinforcement Learning?
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Reinforcement Learning Setting

Problem Formulation
Orient the beam to a desired angle (r) by applying a voltage (u and −u) to the motors.

I Action: Voltage applied to the motors (u)
I State: Distance to the desired angle (∆ = Θ − r) and the current angular velocity

(ω = Θ̇)
I Reward: Negative absolute distance to the desired angle (−|∆|)

I Agent: Proximal Policy Optimization (PPO)
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RL Training Runs (constant r)

Configurations:
I 20 runs
I r = 10°
I Episode length = 60s
I Sample time = 0.1s

Result:
I max(Return) = -2.13
I |−2.13|

600 · 180
π = 0.64◦
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Policy Evaluation
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Policy Comparison

Episode 200

Episode 500
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RL Training Runs (dynamic r)

Configurations:
I 5 runs
I r = [0,−5, 5, 20,−20, 40,−40]
I r changes every 10s
I Episode length = 80s
I Sample time = 0.1s

Result:
I max(Return) = -77.93
I |−77.93|

800 · 180
π = 5.6◦
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Policy Evaluation (dynamic r)
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Test Runs
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Conclusion and Outlook

Results
Using RL we can achieve a similar performance as with the MPC controller.

Outlook
I Detailed comparison to well established controller like MPC
I Adaptations in state space
I Extension to 2 DOF system
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