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Reinforcement Learning
Success Stories

" AlphaZero (2017):
" General-purpose game-playing Al.
" Chess, shogi, and Go at a superhuman level.
* Training solely through self-play, without any prior knowledge of the games.

6-Feb-24



RL in Industry Applications

= Job Shop Scheduling

= Planning in Matrix Production
= Routing

* Energy Management Systems
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RL in Industry Applications
Challenges

1. Where and when RL can be beneficial?

* How big does my state space and action space need to be for RL to beat
heuristics?

" How does stochasticity impact results?
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2. Simulations
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3. Implementing a function approximator is hard for companies to do!
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* Lack of standard processes.
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RL in Industry Applications
Challenges

1. Where and when RL can be beneficial?

* How big does my state space and action space need to be for RL to beat
heuristics?

" How does stochasticity impact results?

2. Simulations
= Creating simulations / digital twins is hard!
" Even when you have the simulation, there is the real-world gap.

c Implementing a function approximator is hard for companies to do!\

Lack of transparency/explainability.

Lack of standard processes.
\_ J
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RL in Industry Applications

Research Question

= Can we still benefit from an RL Agent without having to implement a
neural network directly into control software?
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Explainability in Reinforcement Learning
Powertrain Control Use Case
= Gear shifting logic for an automatic drive vehicle.

= Just a good, well understood use case to demonstrate feasibility.
= Start boring ©

Driving Cycle r

Driver |7Vehicle & Vehicle Environment
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Explainability in Reinforcement Learning
Powertrain Control Use Case

= Gear shifting logic for an automatic drive vehicle.

= Just a good, well understood use case to demonstrate feasibility.

= Start boring ©

RL Agent

Driving Cycle r Driver |7Vehicle & Vehicle Environment
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

= Full vehicle model with internal combustion engine, transmission, powertrain control algorithms.

= Used for powertrain matching analysis and component selection, control and diagnostic algorithm design,
and hardware-in-the-loop testing
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https://www.mathworks.com/help/autoblks/ug/conventional-vehicle-reference-application.html
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

Driving Cycle:
Reference Velocity to be followed
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

Driver:

Driver generates normalized
acceleration and braking
commands.
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Explainability in Reinforcement Learning

Matlab: Conventional Vehicle Reference Application
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Control Unit: Implements a powertrain control module
(PCM) containing a transmission control module (TCM)

and engine control module (ECM)
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application
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TransSwitch: External input for transmission control model. Allows for external input of gear.
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Explainability in Reinforcement Learning

Goal:

Can we replace this gear shifting logic with an explainable RL-based policy?
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Explainability in Reinforcement Learning

Benchmark

= Matlab optimised controller

* Inputs:
= Vehicle Speed
= Pedal Position
= Current Gear
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Explainability in Reinforcement Learning

Benchmark

= Matlab optimised controller

* Inputs:

= Vehicle Speed
= Pedal Position
= Current Gear
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State Space
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Explainability in Reinforcement Learning
Evaluation

" Fuel Economy
= Total distance / total fuel for the complete driving cycle.

Fuel Economy [mpd]

Time [s]
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Explainability in Reinforcement Learning

Evaluation

= Velocity Following
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Velocty [kmy/h]

§

20




Explainability in Reinforcement Learning
Speed Faults

= European Union Commission. "Speed trace tolerances". European Union Commission Regulation.
32017R1151, Sec 1.2.6.6, June 1, 2017.
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Speed

Explainability in Reinforcement Learning

Velocity Following

= European Union Commission. "Speed trace tolerances". European Union Commission Regulation.

32017R1151, Sec 1.2.6.6, June 1, 2017.
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! Parameter

Time
Speed tolerance
Time tolerance
Maximum number of faults
Maximum single fault time
Maximum total fault time
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Description

Speed tolerance above the highest point and below the lowest
point of the drive cycle speed trace within the time tolerance.

Time that the block uses to determine the allowable speed range.

Maximum number of faults allowed during the drive cycle without
causing fault failure.

Maximurmn fault duration allowed without causing fault failure.

Maximum allowed accumulated time under fault condition without
causing fault failure.

WLTP Tests?

2.0 km/h

10s
10

10s
Not specified
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welocty [km/h]

Explainability in Reinforcement Learning
Benchmark
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Matlab 38.76
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Explainability in Reinforcement Learning

Driving Cycles

¥ehicle Speed, mph
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EPA Urban Dynamometer Driving Schedule

Length 1369 seconds - Distance = 7.45 miles - Average Speed = 19.59 mph
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o 1 United States
L Environmental Protection
\’ Agency

Environmental Topics v

Laws & Regulations v Report a Violation v About EPA v

Vehicle and Fuel Emissions Testing

Vehicle & Fuel Emissions
Testing Home

Emission Testing Laboratory

Science & Technology
Development

Certification & Compliance
Testing

Work With Us

Search EPA.gov Q

CONTACT US

Dynamometer Drive Schedules

On this page:

® EPAVehicle Chassis Dynamometer Driving Schedules

s California EPA Air Resources Board Dynamometer Driving Schedules

® Economic Commission for Europe Dynamometer Operating Cycles

® Driving schedules specified in Japanese Technical Standards

s Vehicle Chassis Dynamometer Shift Schedule Formatting Guidance

This page provides the chassis dynamometer driving schedules and shift schedules used by EPA

for vehicle emissions and fuel economy testing. This page also provides detailed information

on those drive schedules in addition to technical information on drive schedules used by

states, Europe, and Japan for reference.

The Code of Federal Regulations is the official source of EPA's vehicle/engine certification test

procedures.

Graphic Review of Driving Schedules

EPA Vehicle Chassis Dynamometer Driving Schedules (DDS) -

files contain tab delimited ASCII columns
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Explainability in Reinforcement Learning
Gymnasium Environment

" Compile Matlab simulation into a *.dll file.
= Can be called in Python via a step() function.
" Includes our reward function
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Explainability in Reinforcement Learning
Gymnasium Environment

" Compile Matlab simulation into a *.dll file.
= Can be called in Python via a step() function.
" Includes our reward function

R(t) = —a|vpes (1) — vact(t)| — Z f(t)

t—At

» Free parameter
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Explainability in Reinforcement Learning
Stable Baslines implementation

= Gymnasium environments are compatible with stable baselines.

= Stable Baselines3 is “a set of reliable implementations of
reinforcement learning algorithms in PyTorch.”

* PPO:

6-Feb-24
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Explainability in Reinforcement Learning
Hyperparameter Tuning with Weights and Biases

catherine-laflamme
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Explainability in Reinforcement Learning
Results RL Agent

Num Faults v. Fuel Economy

-m

Matlab 38.76

ooooooooooo
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Explainability in Reinforcement Learning
Results RL Agent

Num Faults v. Fuel Economy
10 o0 ®o ¢
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Matlab 38.76 ummary: Many ,good” neural network policies.
Can we use them to form a lookup table?
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Explainability in Reinforcement Learning
Q-Table Attempt

" Note: We did attempt to train a Q-table from scratch.
" How to discretize continuous variables?
= Very inefficient training

= Never obtained a policy better than the benchmark.
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Explainability in Reinforcement Learning
Method

1. Train RL Agent

2. Sample the policy network (small state space -> can sample
uniformly.)

3. Train a decision tree with standard supervised learning, fixing the
depth/number of nodes of the decision tree.

4. Implement the decision tree as a lookup-table policy and test on
the different driving cycles.
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Explainability in Reinforcement Learning

Performance on Driving Cycle ,FTP“
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Fuel Economy (as ratio to RL Agents FE)

Decision Tree Depth vs Performance
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Explainability in Reinforcement Learning

Testing on Different Driving Cycles
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Explainability in Reinforcement Learning
Testing on Different Driving Cycles
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Explainability in Reinforcement Learning
Testing on Different Driving Cycles

6 7 8 9 10 11
Number of Cycles where a DT performed better in both FE and Faults
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Explainability in Reinforcement Learning
Testing on Different Driving Cycles

Count

7 8 9 10

Number of Cycles where a DT performed better in both FE and Faults
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Explainability in Reinforcement Learning
Example Result

RL 46.502527 8
DT (Depth 3) 40.878837 O
Matlab Benchmark 38.762721 8

DT (Depth 3, Nodes 15)

Vehicle Speed [km/h] _|20.45 3955

Engine Speed [rpm] | 2090.91 3484.85 E Y
Pedal Position [0-1] m
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Explainability in Reinforcement Learning
Results

Comparison of Matlab, DT and RL Policies
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Explainability in Reinforcement Learning
Conclusions

= Sampling a neural network policy could be a method to create a user-
friendly and explainable policy for small state spaces.

" Larger state spaces (where uniform sampling is not possible) could be
possible but not studied here.

= Despite small tables, still improved performance compared to
benchmarks.
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