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 AlphaZero (2017):
 General-purpose game-playing AI. 
 Chess, shogi, and Go at a superhuman level. 
 Training solely through self-play, without any prior knowledge of the games.
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Reinforcement Learning
Success Stories



 Job Shop Scheduling
 Planning in Matrix Production
 Routing
 Energy Management Systems
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RL in Industry Applications



1. Where and when RL can be beneficial?
 How big does my state space and action space need to be for RL to beat

heuristics?
 How does stochasticity impact results? 
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RL in Industry Applications
Challenges



 Can we still benefit from an RL Agent without having to implement a 
neural network directly into control software?
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RL in Industry Applications
Research Question



Gear shifting logic for an automatic drive vehicle.
 Just a good, well understood use case to demonstrate feasibility.
 Start boring
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Explainability in Reinforcement Learning
Powertrain Control Use Case
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 Full vehicle model with internal combustion engine, transmission, powertrain control algorithms.

 Used for powertrain matching analysis and component selection, control and diagnostic algorithm design, 
and hardware-in-the-loop testing
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

https://www.mathworks.com/help/autoblks/ug/conventional-vehicle-reference-application.html
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

Driving Cycle: 
Reference Velocity to be followed
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

Driver: 
Driver generates normalized 
acceleration and braking 
commands.
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

Control Unit: Implements a powertrain control module 
(PCM) containing a transmission control module (TCM) 
and engine control module (ECM) 
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Explainability in Reinforcement Learning
Matlab: Conventional Vehicle Reference Application

TransSwitch: External input for transmission control model. Allows for external input of gear. 
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Explainability in Reinforcement Learning
Goal:

Can we replace this gear shifting logic with an explainable RL-based policy?



Matlab optimised controller
 Inputs: 
 Vehicle Speed
 Pedal Position
 Current Gear 
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Explainability in Reinforcement Learning
Benchmark

State Space



 Fuel Economy
 Total distance / total fuel for the complete driving cycle. 
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Explainability in Reinforcement Learning
Evaluation



 Velocity Following
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Explainability in Reinforcement Learning
Evaluation



 European Union Commission. "Speed trace tolerances". European Union Commission Regulation. 
32017R1151, Sec 1.2.6.6, June 1, 2017.
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Explainability in Reinforcement Learning
Speed Faults
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Explainability in Reinforcement Learning
Velocity Following
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Explainability in Reinforcement Learning
Benchmark

Fuel Economy # Faults

Matlab 38.76 8
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Explainability in Reinforcement Learning
Driving Cycles
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Explainability in Reinforcement Learning
Gymnasium Environment

 Compile Matlab simulation into a *.dll file.
 Can be called in Python via a step() function. 
 Includes our reward function
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Gymnasium Environment

 Compile Matlab simulation into a *.dll file.
 Can be called in Python via a step() function. 
 Includes our reward function

Free parameter
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Explainability in Reinforcement Learning
Stable Baslines implementation

Gymnasium environments are compatible with stable baselines. 
 Stable Baselines3 is “a set of reliable implementations of 

reinforcement learning algorithms in PyTorch.” 
 PPO: 
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Explainability in Reinforcement Learning
Hyperparameter Tuning with Weights and Biases
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Explainability in Reinforcement Learning
Results RL Agent

Fuel Economy # Faults

Matlab 38.76 8
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Explainability in Reinforcement Learning
Results RL Agent

Fuel Economy # Faults

Matlab 38.76 8 Summary: Many „good“ neural network policies. 
Can we use them to form a lookup table?



Note: We did attempt to train a Q-table from scratch. 
 How to discretize continuous variables? 
 Very inefficient training

Never obtained a policy better than the benchmark. 

6-Feb-24 31

Explainability in Reinforcement Learning
Q-Table Attempt
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Explainability in Reinforcement Learning
Method

1. Train RL Agent
2. Sample the policy network (small state space -> can sample 

uniformly.)
3. Train a decision tree with standard supervised learning, fixing the

depth/number of nodes of the decision tree. 
4. Implement the decision tree as a lookup-table policy and test on 

the different driving cycles. 
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Explainability in Reinforcement Learning
Performance on Driving Cycle „FTP“
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Explainability in Reinforcement Learning
Testing on Different Driving Cycles

Smallest DT that outperforms benchmark (in FE and #Faults) on all cycles: depth = 5
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Explainability in Reinforcement Learning
Example Result
Agent Fuel Economy # Faults

RL 46.502527 8

DT (Depth 3) 40.878837 0

Matlab Benchmark 38.762721 8

Vehicle Speed [km/h] 20.45 39.55

Engine Speed [rpm] 2090.91 3484.85 3545.45 3666.67

Pedal Position [0-1] 0.50

DT (Depth 3, Nodes 15)
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Explainability in Reinforcement Learning
Results
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Explainability in Reinforcement Learning
Conclusions

 Sampling a neural network policy could be a method to create a user-
friendly and explainable policy for small state spaces.
 Larger state spaces (where uniform sampling is not possible) could be

possible but not studied here. 
 Despite small tables, still improved performance compared to

benchmarks. 



REINFORCE is funded under project 
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programme.

6-Feb-24 41

Thank you!
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