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X-ray Transport

Far Experimental Hall

Experimenters come for a few days — a week

beam duration, x-ray wavelength etc.
adjusted for each experiment



https://lcls.slac.stanford.edu/
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Beam exists in 6-D position-momentum phase space

Have incomplete information from many different diagnostics
(2D beam images, spectra, scalars)

Hundreds of controllable variables and millions to monitor
A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

Many different user setups requested, machine in high-demand Ty
100 | i
Dynamic control during experiment (e.g. scan two bunch s % N -
positions) increasingly requested s o -
Time-dependent behaviors + slow drift over time o o R —

Nonlinear, high-dimensional optimization/control problem 50 100 180 200 250 Time (fs)
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Variety of optimization/control needs
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Tuning approaches leverage different amounts of data / previous knowledge
-> suitable under different circumstances

i _
less assumed knowledge of machine more

4 N\ \ \
Model-Free Model-guided Global Modeling +

Optimization Optimization Feed-forward Corrections

\/ J. Kirschner

Observe performance change after a
setting adjustment Update a model at each step Make fast system model

= provide initial guess (i.e. warm
start) for settings or fast compensation

- estimate direction or apply

o . - use model to help select the next
heuristics toward improvement

point
\ J \. J \ J
gradient descent Bayesian Optimization ML system models +
simplex Reinforcement Learning inverse models

ES

SLAC strategy: first use algos with minimal data overhead, then build up to more data-intensive / model-informed approaches

In practice: a lot of initial focus on BO, and now incorporating more system model information + moving
toward deep RL
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Many successes
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physics in kernel design
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Duris et. al. PRL, 2020

+ Hysteresis mo«

=

+ Gaussian process
model

Roussel et. al. PRL, 2022

Applied magnetic field
Ho. = {Ho, Hy, ..., H,}

Magnetization
@ = M(Ho,)

Beam measurement
Y = fa) +e

Roussel et. al. PRAB, 2021

Loss rate tuning at SPEAR3 +
physics kernel improvements

Sextupole tuning for IP at FACET-I
(notorious to tune by hand)
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Many successes
with Bayesian
Optimization

(+ improvements)

20X faster emittance tuning
with BAX “virtual objective”
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Monochrometer tuning (work in progress)

Objective and Summary Statistics vs Time
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Neural Network System Models + Bayesian Optimization

Combining more expressive models with BO = important for scaling up to higher-dimensional sl————
y prior
tuning problems (more variables) ® ydata ~20
\
> 0+ \
Good first step from previous work: use neural network /4
system model to provide a prior mean for a GP sequisition 51 - | | . | .
/\ -2 0 2 4 6 8
Used the LCLS injector surrogate model for prototyping prior mean . X
variables: solenoid, 2 corrector quads, 6 matching quads 3 Systetn
objective: minimize emittance and matching parameter - model prediction returns to prior
data
Correlations Between
icti ean and Standard Error of Best -Emittance*bmag per Iteration ( rials)
redictions and Ground Trut M S E f Best -E 50T
Corre\a(i?ns between Model2 and Surrogate (Ground Truth) (10k samples) g 0 - —0.6 B
Correlation = 1 E /-—’d—f——’
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0 10 20 30 40 50
iteration
Even prior mean models with substantial inaccuracies provide a Rt =2

boost in initial convergence

NeurlPS proceeding: https://arxiv.org/abs/2211.09028



https://arxiv.org/abs/2211.09028

‘““Bayesian Exploration” for Efficient Characterization

O\ Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

v

Automatic Exploration

(constrained to useful values [+ | Y .
) R X-y emit,
of emittance and match) s g
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[ Comprehensive ML ] FACET-I Injector

Models of Injector

transverse phase space

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared

to 5 hrs for 4 variables with N-D parameter scan
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Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

¢ Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

Predicted Measured

* Example of integrated cycle between characterization, modeling, and
optimization 2 now want to extend to larger system sections and new setups

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Deployment: Xopt and Badger

t Xopt: houses optimization algorithms

xopt:
max_evaluations: 6400

generator:
name: cnsga
population_size: 64
population_file: test.csv
output_path: .

evaluator:
function: xopt.resources.test_functions.tnk.evaluate TNK
function_kwargs:
raise_probability: @.1

VOCs:
variables:
x1: [@, 3.14159]
x2: [@, 3.14159]
objectives: {yl: MINIMIZE, y2: MINIMIZE}
constraints:
c1: [GREATER_THAN, @]
c2: [LESS_THAN, 0.5]
linked_variables: {x9: x1}
constants: {a: dummy_constant}

Python interface

# create Xopt object.
X = Xopt(YAML)

# take 10 steps and view data
for _ in range(190):
X.step()

X.data

Many optimization algorithms

- Genetic algorithms (NSGA-
I, etc.)

- Nelder-Mead Simplex

- Bayesian Optimization

- Bayesian Exploration

- Trust-region BO

- Learned output constrained
BO

- Interpolating BO

Badger GUI interface

User interface, I/O with machine

https://christophermayes.github.io/Xopt/

https://christophermayes.github.io/Xopt/algorithms/

https://github.com/slaclab/Badger

—> Has been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF, AWA, NSLS-Il, FLASHForward)

—> Working to make interoperable with other software (e.g. Gymnasium)


https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/
https://github.com/slaclab/Badger

Badger V0191 (on testrhel7) B
Badger v0.11

History Run | BadgerOpt-2022-12-10-034039.yaml

Run Monitor Routine Editor History Run  BadgerOpt-2023-08-27-223758.yaml

Evaluation History Plot Type X Axis | Iteration ve m
Run Monitor Routine Editor

Evaluation History Plot Type X Axis | Iteration Y Axis (Var) Raw

\/
M LCLS FEL pulse energy

Evaluation History (X)

Delete Run Logbook  JCITLET

current routine: HXR.LI26.601-901.Gain=4

0.04 to 0.14 mj in SXR = 15% better than hand—tuningr

41hr =2 best lifetime observed ever (in record speed of |5 minutes) Sc— s
injection efficiency improved by 5%

current routine: turbo-indipsext-8s-warm

Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)
Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)
Working on integrating global model priors = not learning from scratch each time

Working to make compatible with RL problems + gymnasium

] Relative




Combining BO with Warm Starts from Online Physics Models

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

7

Readings from machine via EPICS
injector settings, laser profile from VCC image

emittance and beam sizes along z

OTROH04
i

.| z-E ’

A

%)

LCLS-II live sim: run on HPC and display in control room
Updates every 3-8 mins, space charge included, uses LUME-IMPACT

-

v

Adjust settings / ranges with insight from predictions

— Hand over to ML-based optimization for fine tuning

Xopt LCLS-Il Emittance Optimization 2022-12-04
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OTRS HTR 330 EMIT

vex 0.43/1.00
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Best emittance yet obtained during
LCLS-Il injector commissioning

despite extensive previous hand-tuning

=

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online




That’s a lot of success with BO ... but we want RL too

BO is very useful in some contexts:

0.6298

FEL Jitter: 22.2 %

® HXR SXR PV:

*  Tune/characterize new systems/problems from scratch

*  Output constraints/safety constraints (simple with BO)

Points to Ave: 240
FFT Low Pass: 30

*  Tricks can aid convergence speed/dimensionality

Rejection Lim: 0.1

Plot Filter Filter Zeros
| v Plot data Stop

Draw Rate 798.6108

RL can help address a different set of needs:
*  Use global machine information / changes over time for rapid 120 Hz FEL pulse intensity

setup + fine-tuning (interpolate in high dim. space) Nonlinear instability = sensitive to dynamic processes
+  Treat as a dynamical system to aid fine control/setup (e.g. trajectory feedback, cooling, LLRF control)

(many time-dependent processes/feedbacks + drift)

*  Address demands for fast dynamic control from users

Suitability of accelerator tuning problems for RL: 4

°
w

energy

XPP:MON:IPM:02:CHO (a.u.

® Many variables, multi-modal signals (images, scalars, time series)

* Continuous state/action spaces

X-y Iaser time 00 0110 1‘01201 10130 10140

BLD:SYS0:500:ENERGY (eV)

Have physics models/simulators for many problems Variety of high dimensional signals for states, objectives



online

Example Problem: Compensate for Upstream Drift in Fast Setup

Can work even under distribution shift
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== Multi-Objective Genetic Algorithm

* Round-to-flat beam (RTFB) transforms are challenging to optimize; sensitive to
upstream drift (e.g. in laser, rf systems)

- want to be able to set up RTFB quickly despite drift btk

fine-tuning

* 2019 study explored ability of a learned model and tuning algorithms to help

* NN model used as warm start for BO, extremum seeking, hand-tuning

Hand-tuning in seconds vs. tens of minutes

* Trained DDPG Reinforcement Learning agent on NN model and tested on
machine under different conditions Boost in convergence speed for other algorithms

= Broadly similar problem (at different scale) for LCLS/IFACET-I switching between setups



online

Example Problem: Compensate for Upstream Drift in Fast Setup
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T== Multi-Objective Genetic Algorithm

* Round-to-flat beam (RTFB) transforms are challenging to optimize; sensitive to
upstream drift (e.g. in laser, rf systems)

- want to be able to set up RTFB quickly despite drift

* 2019 study explored ability of a learned model and tuning algorithms to help

* NN model used as warm start for BO, extremum seeking, hand-tuning

* Trained DDPG Reinforcement Learning agent on NN model and tested on RL agent converged faster/more smoothly than BO

machine under different conditions But was much larger overhead in prep +
we had concerns about the effort needed to generalize it

= Broadly similar problem (at different scale) for LCLS/IFACET-I switching between setups



ol AR
RL for LCLS Accelerator =N
T
Jefferson Lab
Focusing on FEL pulse intensity tuning and Cathode and RF gun
. RF accelerating cavities
quadrupole magnets first Focusing magnets
E E 4 Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
FEL is sensitive to focusing, trajectory; laser g /
g 4 % hoton beam to 7
perturbing beam/feedbacks too much 250MeV  43GeV 14 GeV 4 zxperimem
. \ I - stations
results in beam losses —— Y &l
Injector Main Accelerator Sections

Using data-driven surrogates and
differentiable sims (Cheetah and Bmad) to
train agents (TD3, PPO)

~28 focusing magnets tuned regularly for FEL pulse intensity
(many more variables to include: steering, rf, taper, drive laser)

Iteratively add more data and variables: “| — Predicted (NN surrogate) M
S = Measured T =
* Longitudinal phase space, spectra Es g
2 w0
*  RF phases and amp., undulator taper 2 a /
= Q .-
*  Combine with photon beamline, g £
trajectory control 8 2
: | J z .
Expect first beam times very soon (weeks) | , O o
Quad LI21:211

Samples (increasing time, several hours of tuning)



Needs/Opportunities at SLAC

Uncertainty-aware / trust region RL needed

Sample-efficient adaptation across setups needed
(different charges, beam phase space, multi-bunch)

Transfer learning between LCLS/LCLS-II/FACET-II
= Similar layouts, component design, beam diagnostics, user
needs (e.g. scan two bunches)

Enabling fundamentally new capabilities
* FACETI “extreme beams”; highly sensitive
* Photon science requiring precise dynamic control

Comprehensive online system modeling + RL
* Physics sims + ML surrogates being deployed on local HPC
connected to control system

RL with human feedback = human-Al interaction in the
control room is a current area of study

Fast feedback: LCLS-Il kHz to MHz beam rate

gun L1X

LCLS
L1 Sl L2-linac L3-linac )
BC1 BC2 o i s
250 MeV 4.3 GeV 14 GeV undulator
domain transfer
a &
Laser BC11 BC14 BC20 FACE-I-'”

TCAV

o)\

||||||||

fast dynamic beam
customization

RL + human
feedback




SLAC Pursuing ML for Accelerators Very Broadly

Data reduction/rejection (kHz/MHz data streams)
Event triggering

automated control
+ optimization

ML-enhanced
diagnostics
(provide insight at faster rate,

T~

IS

w

-

X-ray pulse energy (m))
N

—— standard optimizer
GP optimization

——— GP w/ correlations

0 10 20 30
Step number

40

50

BC14

= =

l
L2 (e) )—/—\-O L3 (e)

+

algorithm transfer between systems

BC20

TCAV

Final Focus &
Experimental Area

8 &

Energy Offset [MeV]
8 o

at higher resolution,
non-invasively)

C. Emma et al.,
Q?AB, 2018

A

40
E gun L1X + -40 -30 -20 -1;)[:)mJ10 20 30 40
T \ l , . XTCAV
L1S L2-linac L3-linac \ \ anomaly detection
BClysomev BC243Gev  14Gev undulator failure prediction

(plan maintenance;
alert to changes in machine;
alert to interesting science)

N

,,,,,,,,,,,,,,,,,,,,,,,,,

Kiystron States.

extract unknown
I |
| |

relationships + correlations .
(feed into future control / : |

Sy '

design)

=

digital twins + online modeling

(fast sims, differentiable sims, model calibration, model adaptation) + need uncertainty quantification for all

+ can incorporate physics information in all




Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,

combining algorithms efficiently)

2 Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
=% P | (e.g. SDF at SLAC,
vl & i , _ NERSC at LBNL)
< U3 g Online Modeling

C
5

Measured Input Data Data High-fidelity Physics
(accelerator settings, processing Simulations

input diagnostics)

Cluster Compute
(CPU,GPU)

14 GeV

Adaptive ML Models

L3-linac

EPICS
Control

Measured Output Data Data
(scalars, images processing
describing the beam)

Online Optimization
and Characterization Tools

Archives
(Measurements,

BCT50 Mev BC243 Gev

Active Learning +
Efficient Exploration

L1X

Predictions, and
Models)

Model and ML-Based
Changes in Accelerator Settings Optimization

" Rrr
E cun
Laser
diagnostics

gun
" ejeQ puE S|9POI |EI1I0ISIH

ﬁ Online Control GUI «

Making good progress toward this vision with open-source, modular software tools



Modular, Open-Source
Software Development

Community development of re-usable,

reliable, flexible software tools for

Al/ML workflows has been essential to
maximize return on investment and ensure

transferability between systems

Modularity has been key: separating
different parts of the workflow + using
shared standards

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator
VOC S Generates sample + Evaluates

Defines variables, points objective function

objectives and
constraints

Retrieve result(s), handle errors, add data to generator, store results etc.

vocs: algorithm:
name: TNK test name: bayesian_exploration
variables: Optlong:_ .
x1: [0, 3.14159] n_initial_samples: 5
x2: [0, 3.14159] nEEes A
objectives: {yl: MINIMIZE} generator_options:
constraints: :
c1l: [GREATER_THAN, 0] #Slgma:.
c2: ['LESS_THAN', 0.5] use_gpu:

batch_size: 1
[[0.01, @.0],
False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

Optimizer
standard
LUME data

/

Simulation °'°FJI6 format [ERCEELS
Impact
ASTRA } gen_1.json X
GPT
Bmad v root:
G . » variables:
enesis generation: 1
SRW » vocs:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

Online Impact-T simulation and

live displays; trivial to get running

on FACET-II using same software
tools as the LCLS injector

Modular open-source software has been essential for our work. We welcome new users and contributors.


https://www.lume.science/

Conclusion

* Initially focused on BO and its improvements = have used very broadly at
SLAC and beyond (see review https://arxiv.orglabs/2312.05667)

* Well-established, portable, open-source tools for optimization (Xopt,
Badger)

* Also focused on infrastructure for online modeling: physics models and
surrogate modeling approaches for faster, high-fidelity execution (training RL
agents, online inference, etc)

* Returning now to investigating RL = deal with time-dependent behavior,
larger parameter spaces, fast switching between setups + fine-tuning



Thanks for your attention!
Any questions?

ITALY = UDA




Backups



In reality things are much more difficult...

Relative energy (MeV)

computationally expensive simulations

S

-20 0 20
Longitudinal position (zzm)

imulation

40 -40

10 hours on thousands

J. Qiang, et al., PRSTAB30,

Measurement

(e.g. laser spot)

From the 2017-2018run .’
20 0 20 40 N
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. . 1F. Wang
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144 40 : .
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£l simulation hidden variables / sensitivities
44
24
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many small, compounding
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rtainty

AI/ML is well-positioned to help address these challenges
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Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AlI/ML research: statistical distribution shift between

training set new conditions
training and test data degrades prediction

8 8

c c

Distribution shift is extremely common in accelerators, due to both 8 8

. . . . O (O]

deliberate changes in beam configuration and uncontrolled or hidden

variables model input model input

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty

175 Measured

Predicted (Ensemble Mean)
150

1IN

unseen reglon

50

20000 40000 60000 80000 100000
Sample Number (increasing time)

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally




Fast-Executing,Accurate System Models

Accelerator simulations that include nonlinear and

collective effects are powerful tools, but they can ML models can provide fast approximations to simulations
be computationally expensive (“surrogate models”)
Simulation Measurement gun Ly  NeursiNetwork

XTCAV
L2-linac

BC1 , BC2

250MeV “-“43GeV  14GeV

_ L3-linac

undulator

MeV (relative)
MeV (relative)

Linac sim in Bmad with collective beam effects ~

Relative energy (MeV)
Relative energy (MeV)

29 58 87 116
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24 49 74 9
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Scan of 6 settings in simulation
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y (MeV)

% ]
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e 40 20 o 2o o & 300 0 50 0 24 49 74 9 L L
lanqnzldmal nnswlu;r\ (um) Longitudinal position(xm) L2 Voltage 50 110 100 percent fs (relative) fs (relative)
J. Qiang, et al,, PRSTAB30, L3 Voltage 50 110 100 percent )
10 hours on 054402, 2017 < ms execution speed
thousands of 108 times speedup

cores at NERSC!

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-

fidelity online prediction, tracking of machine behavior, and model-based control




Fast-Executing,Accurate System Models

ML models can provide fast approximations to simulations

. . . . (13 ”»
Bringing simulation (“surrogate models”)
Neural Network

tools from HPC gun LIX ”®

systems to L2-linac _ 3-linac z” 3
online/local somev B243Gev  14Gev  undulator N i
compute . :

Linac sim in Bmad with collective beam effects ~

29 58 87 116
fs (relative)

0 24 4 74 99

Scan of 6 settings in simulation fs {relative)

Simulation
N N o
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Control prototyplng L3 Voltage 50 110 100 percent
Experiment planning < ms execution speed
Online prediction 10 times speedup

Model-based control

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-

fidelity online prediction, tracking of machine behavior, and model-based control




Warm starts for
optimization

A. Scheinker, A. Edelen,
etal, PRL, 2018

Scalar inputs

Convolution Layers
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ML Suggested
\ Inverse initial
Model settings
LIS phase
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Deconvolution Layers

L. Gupta, et dl,
MLST, 2021

Smooth interpolation

Example o, surface from 2D scan, LCLS-II Injector
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Include high-dimensional input information = better output predictions
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Example: Injector Surrogate Model at LCLS 7T °"

Solenoid
Laser-Heater
* ML models trained on physics simulations

* Inputs sampled widely across valid ranges

* Used to develop/prototype new algorithms before

testing online at FACET-Il and LCLS e.g. new Bayesian '5% Emittance
optimization methods, adaptive emittance measurement <7 Screens/Wires
RE [ OTR2

Deflector
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: P i 4 P t'g 7 ML model provides accurate replication of simulation
<1 optimization
< p . Simulation Neural Network y Profile . . .
8 algorithms 5 i . Simulation and ML model trained
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ML models trained on simulations enable fast prototyping of new optimization algorithms = greatly reduces development time




Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets)
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine

- fast-executing ML model allows fast | automatic exploration of

possible error sources

calibration

transforms
-

injector scalars

settings

laser image

longitudinal/
transverse phase space

Here: calibration offset in solenoid strength found automatically with neural network
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Efficient Emittance Optimization with Partial Measurements

Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for
beam size while optimizing - learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
* New algorithmic paradigm leveraging ‘“Bayesian Algorithm Execution’” (BAX) for 20x speedup in tuning
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Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over

standard method for emittance tuning. > Now working to integrate into operations.
- Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.



https://arxiv.org/abs/2209.04587

