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LCLS

https://lcls.slac.stanford.edu 

Experimenters come for a few days – a week

beam duration, x-ray wavelength etc. 
adjusted for each experiment

 

1,062 experiments in 2016

~1023 papers since 2009*

* Even more now; these numbers are a few years old

https://lcls.slac.stanford.edu/


Nonlinear, high-dimensional optimization/control problem

Beam exists in 6-D position-momentum phase space
  

Have incomplete information from many different diagnostics 
(2D beam images, spectra, scalars)
  

Hundreds of controllable variables and millions to monitor
   

Many different user setups requested, machine in high-demand
   

Dynamic control during experiment (e.g. scan two bunch 
positions) increasingly requested
  

Time-dependent behaviors + slow drift over time

Time (fs)

En
er

gy
 (M

eV
)

A. Marinelli, IPAC’18
A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)



J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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J. Qiang et al, PRAB (2017)
A. Marinelli, IPAC’18

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Rapid beam 
customization 

Achieve 
unprecedented beam 

parameters 
(new science)

Maintain stability 
for experiments
(tight tolerances)

Actively scan 
bunch 

parameters

Variety of optimization/control needs



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after a 
setting adjustment

 à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

 à use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

Make fast system model
 

à provide initial guess (i.e. warm 
start) for settings or fast compensation

gradient descent
simplex

ES

Bayesian Optimization
Reinforcement Learning

ML system models +
inverse models

Tuning approaches leverage different amounts of data / previous knowledge
 à suitable under different circumstances

 
 

J. Kirschner

less

SLAC strategy: first use algos with minimal data overhead, then build up to more data-intensive / model-informed approaches
In practice: a lot of initial focus on BO, and now incorporating more system model information + moving 

toward deep RL



Sextupole tuning for IP at FACET-II
(notorious to tune by hand)

Longitudinal phase space 
tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization 
possible when including magnetic 

hysteresis effects

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 
hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

FEL pulse energy tuning at LCLS 
+ physics in kernel design

Loss rate tuning at SPEAR3 +
physics kernel improvements

Multi-objective BO 
(+ exp. Pareto front) 

target

Many successes 
with Bayesian 
Optimization

 (+ improvements)

Roussel et. al. PRAB , 2021



Many successes 
with Bayesian 
Optimization

 (+ improvements)

Optimize LCLS-II 
injector emittance while 
learning to keep dark 

current low

Monochrometer tuning (work in progress)20X faster emittance tuning 
with BAX “virtual objective”



Neural Network System Models + Bayesian Optimization
Combining more expressive models with BO à important for scaling up to higher-dimensional 
tuning problems (more variables)
 

Model 2

G
ro

un
d 

Tr
ut

h

Correlations Between 
Predictions and Ground Truth 

Even prior mean models with substantial inaccuracies provide a 
boost in initial convergence 

Good first step from previous work: use neural network 
system model to provide a prior mean for a GP
 
Used the LCLS injector surrogate model for prototyping
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

NeurIPS proceeding: https://arxiv.org/abs/2211.09028 

regular Bayesian
 optimization

prior mean from 
models with different fidelity

model prediction returns to prior

https://arxiv.org/abs/2211.09028


“Bayesian Exploration” for Efficient Characterization

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 
 

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

Comprehensive ML 
Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector

x

y



Deployment: Xopt and Badger

Many optimization algorithms
- Genetic algorithms (NSGA-

II, etc.)
- Nelder-Mead Simplex
- Bayesian Optimization
- Bayesian Exploration
- Trust-region BO
- Learned output constrained 

BO
- Interpolating BO

https://christophermayes.github.io/Xopt/ 
https://christophermayes.github.io/Xopt/algorithms/ 

àHas been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF,  AWA, NSLS-II, FLASHForward) 
à Working to make interoperable with other software (e.g. Gymnasium)

https://github.com/slaclab/Badger 

User interface, I/O with machine

Xopt: houses optimization algorithms

Python interface

https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/
https://github.com/slaclab/Badger


ESRF loss rate reduction

LCLS FEL pulse energy

• Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)
• Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)
• Working on integrating global model priors à not learning from scratch each time
• Working to make compatible with RL problems + gymnasium

0.04 to 0.14 mJ in SXR à 15% better than hand-tuning

41hr à best lifetime observed ever (in record speed of 15 minutes)
injection efficiency improved by 5%



Combining BO with Warm Starts from Online Physics Models



That’s a lot of success with BO … but we want RL too

BO is very useful in some contexts:

• Tune/characterize new systems/problems from scratch

• Output constraints/safety constraints (simple with BO)

• Tricks can aid convergence speed/dimensionality

RL can help address a different set of needs:

• Use global machine information / changes over time for rapid 
setup + fine-tuning (interpolate in high dim. space)

• Treat as a dynamical system to aid fine control/setup
(many time-dependent processes/feedbacks + drift)

• Address demands for fast dynamic control from users

Suitability of accelerator tuning problems for RL: 

• Many variables, multi-modal signals (images, scalars, time series)
• Continuous state/action spaces 
• Have physics models/simulators for many problems

120 Hz FEL pulse intensity
Nonlinear instability à sensitive to dynamic processes

 (e.g. trajectory feedback, cooling, LLRF control)

Variety of high dimensional signals for states, objectives
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Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

• Round-to-flat beam (RTFB) transforms are challenging to optimize; sensitive to 
upstream drift (e.g. in laser, rf systems)
à want to be able to set up RTFB quickly despite drift

• 2019 study explored ability of a learned model and tuning algorithms to help

• NN model used as warm start for BO, extremum seeking, hand-tuning

• Trained DDPG Reinforcement Learning agent on NN model and tested on 
machine under different conditions

Example Problem: Compensate for Upstream Drift in Fast Setup

à Broadly similar problem (at different scale) for LCLS/FACET-II switching between setups

Can work even under distribution shift



RL agent converged faster/more smoothly than BO 
 

But was much larger overhead in prep + 
we had concerns about the effort needed to generalize it

• Round-to-flat beam (RTFB) transforms are challenging to optimize; sensitive to 
upstream drift (e.g. in laser, rf systems)
à want to be able to set up RTFB quickly despite drift

• 2019 study explored ability of a learned model and tuning algorithms to help

• NN model used as warm start for BO, extremum seeking, hand-tuning

• Trained DDPG Reinforcement Learning agent on NN model and tested on 
machine under different conditions

Example Problem: Compensate for Upstream Drift in Fast Setup

à Broadly similar problem (at different scale) for LCLS/FACET-II switching between setups

Can work even under distribution shift



RL for LCLS Accelerator

• Focusing on FEL pulse intensity tuning and 
quadrupole magnets first

• FEL is sensitive to focusing, trajectory; 
perturbing beam/feedbacks too much 
results in beam losses

•

• Using data-driven surrogates and 
differentiable sims (Cheetah and Bmad) to 
train agents (TD3, PPO)

• Iteratively add more data and variables:

• Longitudinal phase space, spectra
• RF phases and amp., undulator taper
• Combine with photon beamline, 

trajectory control

• Expect first beam times very soon (weeks)
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~28 focusing magnets tuned regularly for FEL pulse intensity
(many more variables to include: steering, rf, taper, drive laser)



Needs/Opportunities at SLAC

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

• Uncertainty-aware / trust region RL needed

• Sample-efficient adaptation across setups needed
(different charges, beam phase space, multi-bunch)

• Transfer learning between LCLS/LCLS-II/FACET-II
 à Similar layouts, component design, beam diagnostics, user 
needs (e.g. scan two bunches)

• Enabling fundamentally new capabilities
• FACET-II “extreme beams”; highly sensitive
• Photon science requiring precise dynamic control

• Comprehensive online system modeling + RL
• Physics sims + ML surrogates being deployed on local HPC 

connected to control system

• RL with human feedback à human-AI interaction in the   
control room is a current area of study 

• Fast feedback: LCLS-II kHz to MHz beam rate

domain transfer

fast dynamic beam
 customization

RL + human 
feedback

FACET-II

LCLS



digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

ML-enhanced 
diagnostics 

(provide insight at faster rate, 
at higher resolution, 

non-invasively)

anomaly detection
 failure prediction

(plan maintenance; 
alert to changes in machine; 
alert to interesting science) 

extract unknown
relationships + correlations

(feed into future control / 
design)

J. Duris 
et al., 
PRL, 
2020

C. Emma et al., 
PRAB, 2018

+ need uncertainty quantification for all
+ can incorporate physics information in all 

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

automated control
 + optimization

algorithm transfer between systems

Data reduction/rejection (kHz/MHz data streams)
Event triggering

SLAC Pursuing ML for Accelerators Very Broadly



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



Community development of re-usable, 
reliable, flexible software tools for 
AI/ML workflows has been essential to 

maximize return on investment and ensure 
transferability between systems

Modularity has been key: separating 
different parts of the workflow + using 

shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

 

Online model deployment (LUME-services)

Online Impact-T simulation and 
live display; trivial to get running 
on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  We welcome new users and contributors.

https://www.lume.science/


Conclusion

• Initially focused on BO and its improvements à have used very broadly at 
SLAC and beyond (see review https://arxiv.org/abs/2312.05667)

• Well-established, portable, open-source tools for optimization (Xopt, 
Badger)

• Also focused on infrastructure for online modeling: physics models and 
surrogate modeling approaches for faster, high-fidelity execution (training RL 
agents, online inference, etc)

• Returning now to investigating RL à deal with time-dependent behavior, 
larger parameter spaces, fast switching between setups + fine-tuning



Thanks for your attention!
Any questions?



Backups



In reality things are much more difficult…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

10 hours on thousands 
of cores at NERSC!

computationally expensive simulations

AI/ML is well-positioned to help address these challenges

laser at FAST



Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AI/ML research: statistical distribution shift between 
training and test data degrades prediction

Distribution shift is extremely common in accelerators, due to both 
deliberate changes in beam configuration and uncontrolled or hidden 

variables

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

model input

co
un

ts

training set new conditions

model input

co
un

ts

  Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 



Fast-Executing, Accurate System Models

26

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-
fidelity online prediction, tracking of machine behavior, and model-based control

Accelerator simulations that include nonlinear and 
collective effects are powerful tools, but they can 

be computationally expensive
ML models can provide fast approximations to simulations

 (“surrogate models”)

< ms execution speed

106 times speedup

10 hours on 
thousands of 
cores at NERSC!



Fast-Executing, Accurate System Models

27

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-
fidelity online prediction, tracking of machine behavior, and model-based control

ML models can provide fast approximations to simulations
 (“surrogate models”)

< ms execution speed

106 times speedup

Bringing simulation 
tools from HPC 

systems to 
online/local 
compute

Online prediction
Model-based control

Control prototyping
Experiment planning



Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 
(example on AWA)

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
 et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021



 

 
 

• ML models trained on physics simulations
 
 

• Inputs sampled widely across valid ranges
 

• Used to develop/prototype new algorithms before 
testing online at FACET-II and LCLS e.g. new Bayesian 
optimization methods, adaptive emittance measurement

interactive model widget 
and visualization tools

Simulation and ML model trained 
on it are qualitatively similar to 

measurements

ML model provides accurate replication of simulation

ML models trained on simulations enable fast prototyping of new optimization algorithms à greatly reduces development time  

prototyping 
optimization
algorithms

Example: Injector Surrogate Model at LCLS



Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:
     static error sources (e.g. magnetic field nonlinearities, physical offsets) 
     time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine 
à fast-executing ML model allows fast / automatic exploration of 
possible error sources 

Here: calibration offset in solenoid strength found automatically with neural network 
model (trained first in simulation, then calibrated to machine)

injector
settings

laser image

calibration
transforms

longitudinal/
transverse phase space

Without calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

 

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

scalars



Efficient Emittance Optimization with Partial Measurements
• Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for 

beam size while optimizing à learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
• New algorithmic paradigm leveraging “Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning

simulation

experiment

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over 
standard method for emittance tuning. à Now working to integrate into operations. 

àAlso now working to incorporate more informative global models /priors rather than learning the model from scratch each time.

model is learned
 on-the-fly

Convergence of beam size prediction error 
gives practical indicator of optimization 
convergence (no need to do direct emittance 

measurement until the end)

Found equivalent quality to hand-
tuning in about 70 iterations (estimate 

this would take a few minutes with 
computationally optimized routine)

https://arxiv.org/abs/2209.04587 

https://arxiv.org/abs/2209.04587

