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Problem Statement
@ Model based

e Optimization with dynamic models involves system identification
o Optimization accuracy depends on model fidelity

@ Online tuning procedures optimize the system directly

@ Heuristic tuning is time consuming
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Example: Synchronization System of the EuXFEL
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SLo

up to 20 x LSU

Minimize timing gap between X-Rays and Pump-Probe laser pulses by tuning controllers

@ Largest linear particle accelerator in the world @ Expensive machine time
@ Measurable timing gap @ Noisy measurements

@ Timing gap must be below a constant value T e Safe optimization



Motivation
Goal

e minf(x) s.t. glz) >0
Proposal

fix)

@ Modified Safe Bayesian optimization

e Black Box approach

e Safe during optimization

o Learns a probabilistic surrogate
model

Gaussian process

@ Increased convergence rate compared
to other optimization approaches
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Black Box

o yY; = f(ml) + g, Where g~ N(()? 0-72L) ;

Input Output
@ Set of observations O = {z;, y;[i =1...n} M fix)

@ Training points * € X and test points o, € X ) o)
.funclion

y

Gaussian process

°X:[:EFV--):BE]TandX*:[flfgl,...,wgs]T model
’:w(z*)ﬂo(z*) * y
pla) — — —f@)
’ ' : b
w0 = ————
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Black Box

o y; = f(x;) + ¢, where e ~ N(0,02) - owont 1
@ Set of observations O = {z;, y;[i =1...n} M fix)
@ Training points £ € X and test points , € X

o X =[zf,...,2T]T and X*:[mgl,...,wzs]T

y

Gaussian process
model

Acquisitiom\ F (x), o(x)
function

@) +20(@)  * v
() ———f®
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Kernel

@ Prior assumption: f ~ GP(0, k(z, x')) ¢
Black box
ftx)

Acquisition j(x), o(x G ian process
function model

@ k(-,-) encodes properties of f
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Kernel

@ Prior assumption: f ~ GP(0, k(x, z')) g
Black box
ftx)

Acquisition j(x), o(x G ian process
function model

@ k(-,-) encodes properties of f

Assumption on the target function

The unknown function f is a member of the Reproducing Kernel Hilbert Space H
defined by the positive definite function k(- ).
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Kernel

@ Prior assumption: f ~ GP(0, k(x, z')) g
Black box
ftx)

Acquisition j(x), o(x G ian process
function model

@ k(-,-) encodes properties of f

)2
o ksp(x,z') = UJ% exp (—0.5%)

o Adjustable hyperparameters [* and o7

Assumption on the target function

The unknown function f is a member of the Reproducing Kernel Hilbert Space H
defined by the positive definite function k(- ).
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Inference

@ Perform inference step as described in!

C =) £20(=.) * v =) +20(2.) * oy
w.) — — —f(=) ulx.) — — —f=)

5 i i i i i i i 5 . X
~ - */ .,
He - >

< 0 == = S0
4
-5 -5
5 -4 -3 -2 -1 0 1 2 3 4 5 5 4 -3 -2 -1 0 1 2 3 4 5
T, X z. e X

IWilliams and Rasmussen, Gaussian processes for machine learning, 2006.
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Bayesian Optimization

@ Acquisition function « searches for €
promising inputs using the predictive Black box
distribution fix)
@ Tpew = arg max oxy) Y
T EX Acquisition\IH(¥); 9(X)| Gaussian process

e minf(z) s.t. g(x)>0 function model



Theory
[e]e]e]e] Jelelelele)

Constraint

e Consider g(xz) = T — f(x)

@ T denotes a safety threshold

@ Avoid evaluation of unsafe
inputs

@ One Gaussian process is

sufficient as dependency of ¢
and f is known

@ Alternatively, two Gaussian
processes for g and f
respectively

40 —— . T T T T T T
\\ \““
20 N
Kl i safety threshold
D e e aa A
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\\~— - o /'/
0 r \~ ;/
5 4 -3 -2 -1 0 2 3 4
xeX
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Modified Safe Options (MoSaOpt)

CJu@)+20(=) % yo —-—-— f(=)
Safe options? evolved to modified safe options J((:lm;&*)_ S
Safe set: & = [z e X|UCB(z) < T} : j
Minimizer set: M = {z € S|LCB(z) < y*}

Expander set: G = {z € S|0S}

2Sui et al., “Safe Exploration for Optimization with Gaussian Processes,” 2015
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Modified Safe Options (MoSaOpt)

l:lugz*; +20(®) ¥ Yy ——— f(=)
(. *  Yin-1
o Safe options? evolved to modified safe options ,, __UcBx, _

e Safeset: & = (v e X|UCB(z) < T} 2
e Minimizer set: M = {z € S|LCB(z) < y*} %
e Expander set: G = {z € S|0S}

20+

0F

MoSaOpt divided into exploration and exploitation phase

2Sui et al., “Safe Exploration for Optimization with Gaussian Processes,” 2015



Exploration

@ Observe the reachable set
R ={zeX|f(z) < T}
@ Tpew = argmaxo(x)
zeg
@ Repeat until entire R is observed indicated by
small uncertainties of expanders

fix)

(x), o(x) G ian process
model

arg max o (z)
z€G

Iteration 1

C ) £20(=) %
we,)  ——— f(=z)




Exploration

@ Observe the reachable set .
R={ze X[f(z) < T}
fix)

@ Tpew = arg ngax o(x)
xe

@ Repeat until entire R is observed indicated by
small uncertainties of expanders

(x), o(x) G ian process
model

arg max o(z)

Iteration 1 Iteration 2
Cp(@) £20(2) % v C ) £20(®) % Yo — = f(x)
wlx,) — ——em f(x) () * Y1

=
©
g
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Exploration

@ Observe the reachable set
R = {z € X(x) < T}
fix)
® Ty = argmaxo(x)
zeg
@ Repeat until entire R is observed indicated by (%™
small uncertainties of expanders

IL(x), o(x)

process
model

Iteration 11
C ) £20(x) % Yo ——-— f(z)
)

£0, X,




Exploration

@ Observe the reachable set
R={zeX|f(z) < T}

fix)
@ Tpew = argmaxo(x)
vEeq 6), 000)] Gauss
@ Repeat until entire R is observed indicated by (%™ e
small uncertainties of expanders
Iteration 11 Iteration 12
:]p(m*;i%(m*) * Yo ——— flx) :]ugm*;ﬂa(m*) * Y f(@)

1.0, X.




Exploitation

e Optimization step: find the minimum in R

@ Freeze the safe set

fix)

o Fit the hyperparameters 0 = {I,07,0,}

. Fit 6 y
° m9|n - |0g p(y|X7 9) g maxEI(x) (), 6(*)| Gaussian process
o model
® Ty = arg max El(z)3
zeM
Iteration 13
C (@) £20()  * g —-—-— f(@)
() * Y1

3Jones et al., “Efficient Global Optimization of Expensive Black-Box Functions,” 1998



Exploitation

e Optimization step: find the minimum in R
o Freeze the safe set g
fix)

o Fit the hyperparameters 0 = {I,07,0,}

_ Fit y
° m9|n - |0g p(y|X7 9) g maxEI(x) (), 6(*)| Gaussian process
- model

® Ty = arg max El(z)3

zeM

Iteration 13 Iteration 14
Cp() £20(2) % yp —-—— f(z) Cp() £20(2) % yp —-—-— f(x)

() *  Yin1 )

f.0, X,

3Jones et al., “Efficient Global Optimization of Expensive Black-Box Functions,” 1998
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Modified Safe Options (MoSaOpt)

@ Safe options? evolved to modified safe options
e Safeset: & = {1z e X|UCB(z) < T} X
@ Minimizer set: M = {z € S|LCB(z) < y*} %
o Expander set: G = {z € S|0S}

MoSaOpt divided into exploration and exploitation phase
o Efficient exploration by evaluating points at the boundaries
o Efficient exploitation by fitting the kernel on the data

= Increased convergence speed

2Sui et al., “Safe Exploration for Optimization with Gaussian Processes,” 2015
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Feasibility

Challenge
e Consider X C RP
o Calculation of sets S, M, G are not numerically tractable for high D
Solution
o Apply Bayesian optimization on an iteratively changing subspace* £ c X
e dim(£) =1 — LineBO
e dim(£) =2 — PlaneB0

@ Iopt = argmin(l — k)y; + k), 1 > Kk >0
=,y €0

4Kirschner et al., “Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional
Subspaces,” 2019.
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Simulation - Synchronization System of the EuXFEL
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@ N = 5 subsystems, each equipped aneB0 © LineB0 1

with a Pl controller @30 — — —Safelpt SafeOpt
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@ Inputs wy.y41 are white Gaussian O

noise <

15 - _J

@ min ”z”RMS = min HGCl(S)HHQ 10 . -
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Iteration n

e Compared to SafeOpt®

5Berkenkamp et al., “Safe controller optimization for quadrotors with Gaussian processes,” 2016
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Experimental - Small Scale Synchronization System

10
_ sl i 100 RMS samples
& p i—LineBO Nelder—Meadi
e N = 2 subsystems =z &
. . ~ o |
 |||lgps of multiple measurements is .
averaged 0 200 400 600 800 1000 1200
6 Time s
o Compared to Nelder-Mead
. . 10
@ Nelder-Mead shows higher noise o | | DTS s
sensitivity i) . i LineBO Nelder-Mead
@ MoSa0Opt finds the optimum approx. 5: N — ]
4x faster S ——
0
0 20 40 60 80 100 120
Time [s]

SLagarias et al., “Convergence Properties of the Nelder—Mead Simplex Method in Low Dimensions,” 1998
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Conclusion

Summary

@ Sample efficient and noise robust Bayesian optimization procedure

@ Increased convergence rate compared to other methods

@ Applicable to high-dimensional optimization problems

o All safeness guarantees are only valid if the true hyperparameters are known
Outlook

@ Extension to multitask Bayesian optimization

@ Taking simulation into account

@ Samples from simulator are cheap

o Find dependency between both tasks to increase convergence

°

How can theoretical guarantees be preserved?
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The End

Thank you very much for your attention!
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