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J. O. Lübsen1 M. Schütte12 S. Schulz2 A. Eichler12

jannis.luebsen@tuhh.de

1Hamburg University of Technology - Institute of Control Systems

2Deutsches Elektronen-Synchrotron - Accelerator Beam Controls

2nd collaboration Workshop on RL4AA
February 5th, 2024

1 / 19



Introduction

Motivation

Problem Statement
Model based

Optimization with dynamic models involves system identification
Optimization accuracy depends on model fidelity

Online tuning procedures optimize the system directly
Heuristic tuning is time consuming
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Introduction

Example: Synchronization System of the EuXFEL

Minimize timing gap between X-Rays and Pump-Probe laser pulses by tuning controllers

Largest linear particle accelerator in the world
Measurable timing gap
Timing gap must be below a constant value T

Expensive machine time
Noisy measurements
Safe optimization
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Introduction

Motivation

Goal
min f (x) s. t. g(x) ≥ 0

Proposal
Modified Safe Bayesian optimization

Black Box approach
Safe during optimization
Learns a probabilistic surrogate
model

Increased convergence rate compared
to other optimization approaches
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Theory Application Results Conclusion

Black Box

yi = f (xi) + ε, where ε ∼ N (0, σ2
n)

Set of observations O = {xi , yi |i = 1 . . . n}
Training points x ∈ X and test points x∗ ∈ X
X = [xT

1 , . . . , xT
n ]T and X∗ = [xT

∗,1, . . . , xT
∗,s]T
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Theory Application Results Conclusion

Kernel

Prior assumption: f ∼ GP(0, k(x, x ′))
k(·, ·) encodes properties of f

kSE(x, x ′) = σ2
f exp

(
−0.5(x − x ′)2

l2

)

Adjustable hyperparameters l2 and σ2
f

Assumption on the target function
The unknown function f is a member of the Reproducing Kernel Hilbert Space H
defined by the positive definite function k(·, ·).
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Theory Application Results Conclusion

Inference

Perform inference step as described in1
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1Williams and Rasmussen, Gaussian processes for machine learning, 2006.
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Theory Application Results Conclusion

Bayesian Optimization

Acquisition function α searches for
promising inputs using the predictive
distribution
xnew = arg max

x∗∈X
α(x∗)

min f (x) s. t. g(x) ≥ 0
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Theory Application Results Conclusion

Constraint

Consider g(x) = T − f (x)
T denotes a safety threshold
Avoid evaluation of unsafe
inputs
One Gaussian process is
sufficient as dependency of g
and f is known
Alternatively, two Gaussian
processes for g and f
respectively

10 / 19



Theory Application Results Conclusion

Modified Safe Options (MoSaOpt)

Safe options2 evolved to modified safe options
Safe set: S = {x ∈ X |UCB(x) ≤ T}
Minimizer set: M = {x ∈ S|LCB(x) ≤ y∗}
Expander set: G = {x ∈ S|δS}

UCB(x*)

LCB(x*)

y*

MoSaOpt divided into exploration and exploitation phase

2Sui et al., “Safe Exploration for Optimization with Gaussian Processes,” 2015
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Theory Application Results Conclusion

Exploration
Observe the reachable set
R = {x ∈ X |f (x) ≤ T}
xnew = arg max

x∈G
σ(x)

Repeat until entire R is observed indicated by
small uncertainties of expanders
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Theory Application Results Conclusion

Exploitation
Optimization step: find the minimum in R
Freeze the safe set
Fit the hyperparameters θ = {l, σf , σn}
min

θ
− log p(y|X , θ)

xnew = arg max
x∈M

EI(x)3

Fit  θ
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Theory Application Results Conclusion

Modified Safe Options (MoSaOpt)

Safe options2 evolved to modified safe options
Safe set: S = {x ∈ X |UCB(x) ≤ T}
Minimizer set: M = {x ∈ S|LCB(x) ≤ y∗}
Expander set: G = {x ∈ S|δS}

UCB(x*)

LCB(x*)

y*

MoSaOpt divided into exploration and exploitation phase
Efficient exploration by evaluating points at the boundaries
Efficient exploitation by fitting the kernel on the data

⇒ Increased convergence speed

2Sui et al., “Safe Exploration for Optimization with Gaussian Processes,” 2015
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Theory Application Results Conclusion

Feasibility

Challenge
Consider X ⊆ RD

Calculation of sets S, M, G are not numerically tractable for high D
Solution

Apply Bayesian optimization on an iteratively changing subspace4 L ⊂ X
dim(L) = 1 → LineBO

dim(L) = 2 → PlaneBO

xopt = arg min
xi ,yi∈O

(1 − κ)yi + κµ(xi), 1 ≥ κ ≥ 0

4Kirschner et al., “Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional
Subspaces,” 2019.
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Simulation - Synchronization System of the EuXFEL

G1(s)Kl(s) ... GN(s)KN(s)wN+1

w1

y

- -
z-e1 eN

Fr(s)

F1(s)

wN

FN(s)
Gcl(s)

r

N = 5 subsystems, each equipped
with a PI controller
Inputs w1:N+1 are white Gaussian
noise
min ∥z∥RMS = min ∥Gcl(s)∥H2
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5Berkenkamp et al., “Safe controller optimization for quadrotors with Gaussian processes,” 2016
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Theory Application Results Conclusion

Experimental - Small Scale Synchronization System

N = 2 subsystems
∥·∥RMS of multiple measurements is
averaged
Compared to Nelder-Mead6

Nelder-Mead shows higher noise
sensitivity
MoSaOpt finds the optimum approx.
4x faster
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6Lagarias et al., “Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions,” 1998
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Theory Application Results Conclusion

Conclusion

Summary
Sample efficient and noise robust Bayesian optimization procedure
Increased convergence rate compared to other methods
Applicable to high-dimensional optimization problems
All safeness guarantees are only valid if the true hyperparameters are known

Outlook
Extension to multitask Bayesian optimization
Taking simulation into account
Samples from simulator are cheap
Find dependency between both tasks to increase convergence
How can theoretical guarantees be preserved?
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The End

Thank you very much for your attention!
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