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Real-world conditions
Problem setup
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Markov Decision Process
Problem setup
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Reinforcement Learning: An Introduction
R. Sutton, A.G. Barto, 1998

State

Action

Agent

Environment

Reward 𝑟𝑡

𝒔𝑡

𝒂𝑡

Find a policy 𝒂𝑡 = 𝜋(𝒔𝑡) that maximizes the sum of expected rewards
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Partial observability
Problem setup
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Reinforcement Learning: An Introduction
R. Sutton, A.G. Barto, 1998

Observation

Action

Agent

Environment

Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

Find a policy 𝒂𝑡 = 𝜋(𝒐𝑡) that maximizes the sum of expected rewards

State 𝒔𝑡
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Oh no
Problem setup
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Observation

Action

Agent
Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

This is a bad idea because...

• Data-efficiency

• Random actuation not great for real systems

• Robustness to different situations

• Safety during and after learning
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Simulated Off-policy meTA learning (SOTA)
Problem setup
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Observation

Action

Agent
Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

Build simulator

𝒂𝑡 = 𝜋(𝒐𝑡)

Randomize over 
environment conditions

(recurrent policy)

Hope for 
the best
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Beyond SOTA
Problem setup
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Observation

Action

Agent
Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

This is a bad idea at the moment because...

• Data-efficiency

• Random actuation not great for real systems

• Robustness to different situations

• Safety during and after learning

Exploration /

model-based RL

Safe / Meta RL
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on-policy
Reinforcement Learning
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Policy

Environment

Observation

Action

Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

state

time action

value Value

= empirical return
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Off-policy („offline“)
Reinforcement Learning
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Policy

Environment

Data Policy optimization𝐷1:𝑡

exploration v.s. exploitation

Observation

Action

Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡

Off-policy data
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Partial observability
Reinforcement Learning
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𝑜0, 𝑎0 , 𝑜1, 𝑎1 , 𝑜2, 𝑎2 , (𝑜3,Off-policy data: ), 𝑜4, 𝑎4 , (𝑜5, 𝑎5)𝑎3

𝑎3 = arg max
𝑎

𝑄 𝑠3, 𝑎

Learned inference network

Common mistake: MDP: 𝑄(𝑠𝑡 , 𝑎𝑡) POMDP: 𝑄(𝑜1:𝑡, 𝑎𝑡) 𝑄(𝑜1:𝑡, 𝒂𝟏:𝒕−𝟏, 𝑎𝑡)

Actor & Critic must depend on past observations & actions (also on-policy)

Can use standard algorithms 
again!
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Model-based
Reinforcement Learning
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Policy

Environment

Data Model-learning Policy optimization𝐷1:𝑡

generate new (off-policy) data exploration v.s. exploitation

Observation

Action

Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡
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Reinforced flavours
Reinforcement Learning
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On-policy

• Reliable algorithms

• Easy to use with recurrent 
policies

• Extremely data in-efficient

Off-policy Model-based

• More data-efficient

• Quality of the learned critic 
extremely important

• Learning recurrent policies 
requires rollin 

     → computationally expensive

• Use cheap model data with 
inefficient RL algorithms!

• Model usually not good 
enough for full episode 
rollouts → off policy RL

• Hybrid models seem great, 
but can also make things 
worse and difficult to learn

• Usually actuators are the 
most critical part to model
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Iterated Offline
Reinforcement Learning
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Policy optimizationData-collection

Find the best policy given the data

𝜋𝑛

Data from 𝜋𝑛

Add trust regions: 𝑑 𝜋, 𝜋𝑛 ≤ 𝜖
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Reward
Reinforcement Learning
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Environment

Simple, smoothed dynamics

Reward function (no action cost)

action cost: 0.01 𝑎𝑡 2
2

Cartpole

Swingup

SAC
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Reward
Reinforcement Learning
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Environment

Partially-observable dynamics

Reward function

Tuning factor

Potentially varies over timeobservations

actions

Some guidelines:

• Start with dense, bounded rewards

• Start with observation-dependent reward (action costs fights with entropy-based exploration)

• It’s okay to change rewards → Re-label past data!

• Be careful about termination signals & rewards (easy to encode unexpected behavior)

• Desired termination: reward > max return

• Undesired termination: reward < min return

• If this is a key issue, might be easier to look into constrained reinforcement learning
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Model-based Reinforcement Learning
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Policy

Environment

Data Model-learning Policy optimization𝐷1:𝑛

generate new (off-policy) data exploration v.s. exploitation

Observation

Action

Reward 𝑟𝑡

𝒐𝑡

𝒂𝑡
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Model errors
Model-based Reinforcement Learning
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Learned model

Real system rollout Model prediction

Environment data / 
Experience replay

model-errors compound
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Policy Improvement
Model-based Reinforcement Learning
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Experience Replay

Learned Dynamics

True policy improvement Model policy improvement Off-policy model error On-policy model error
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Model errors
Model-based Reinforcement Learning
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Learned model

Real system rollout Model prediction

Environment data / 
Experience replay

model-errors compound

DYNA / MBPO

Partial rollouts

short-term prediction

+ =
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Model-based Reinforcement Learning
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𝑦 = ሚ𝑓 (𝑥)

𝑦 = 𝑓(𝑥)

𝑓𝑜𝑝𝑐 𝑥 = ො𝑦 + ሚ𝑓(𝑥) − ሚ𝑓 ො𝑥

ሚ𝑓 𝑥 = 𝑓 𝑥 ∀ 𝑥 ∈ 𝑋 ⟹ 𝑓𝑜𝑝𝑐(𝑥) = 𝑓 𝑥

𝑓𝑜𝑝𝑐( ො𝑥) = 𝑓 ො𝑥

ො𝑥

ො𝑦

Asymptotically correct:

Locally no errors:
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On-Policy Corrections (OPC)
Model-based Reinforcement Learning
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Idea: Generalize replay buffer ( Ƹ𝑠𝑡, ො𝑎𝑡, Ƹ𝑠t+1) with model:

On-policy Model Errors in Reinforcement Learning
L.P. Fröhlich, M. Lefarov, M.N. Zeilinger, F. Berkenkamp, ICLR 2022
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Model errors
Model-based Reinforcement Learning
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Learned model

Real system rollout Model prediction

Environment data / 
Experience replay

model-errors compound

DYNA / MBPO

Partial rollouts

short-term prediction

+ =
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Model errors
Model-based Reinforcement Learning
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+ =

Learned model On-policy corrected 
rollouts

Real system rollout Model prediction

Environment data / 
Experience replay

model-errors compound
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Scalar toy system
Model-based Reinforcement Learning

24
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Theoretical guarantees
Model-based Reinforcement Learning
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Theorem (informal): Under continuity assumptions, for a deterministic policy we have

On-policy Model Errors in Reinforcement Learning
L.P. Fröhlich, M. Lefarov, M.N. Zeilinger, F. Berkenkamp, ICLR 2022

Idealized model:

on-policy error:
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Summary
Towards real-world RL

▪ One of the key questions is how to bring RL to real systems: 

partial observability, data-efficiency, robustness

▪ Need to take care when choosing algorithms and rewards

▪ Model-based methods might be promising, but there’s a sim2real gap

▪ One solution: Use model only to predict changes to real-environment data

https://berkenkamp.me
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