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ChatGPT: Optimizing

Control the plasma in a Lang.uage Models
tokamak fusion reactor for Dialogue

Methods

We trained this model using Reinforcement Learning from Human Feedback
(RLHF), using the same methods as InstructGPT, but with slight differences
in the data collection setup. We trained an initial model using supervised
fine-tuning: human Al trainers provided conversations in which they played
both sides—the user and an Al assistant. We gave the trainers access to
model-written suggestions to help them compose their responses. We mixed
this new dialogue dataset with the InstructGPT dataset, which we
transformed into a dialogue format.

To create a reward model for reinforcement learning, we needed to collect

comparison data, which consisted of two or more model responses ranked
by quality. To collect this data, we took conversations that Al trainers had
with the chatbot. We randomly selected a model-written message, sampled

Viewifrominside. theltotamak Plasma state reconstruction several alternative completions, and had Al trainers rank them. Using these

reward models, we can fine-tune the model using Proximal Policy
Optimization. We performed several iterations of this process.
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https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control

SUPERVISED UNSUPERVISED
LEARNING LEARNING

Classification, prediction, forecasting Segmentation of data
computer learns by example computer learns without prior information about the data

09 o , ° Spamdetection

< * Weather forecasting MACHIN E
0 © % * Housing prices prediction LEARNING
» Stock market prediction

* Medical diagnosis

* Fraud (anomaly) detection
* Market segmentation

* Pattern recognition

REI N FORCEM ENT * Self-driving cars
LEARNING * Make financial trades

4 . * Gaming (AlphaGo)
Real-time deCIS!OnS * Robotics manipulation
computer learns through trial and error
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Learning style Task

Classification
discrete variables

Supervised
Learning

We know the input & output Regression
(labeled data) continuous variables

Clustering
Unsupervised
Learning

We only know the input Association
(unlabeled data)

Machine Learning

Control
Reinforcement

Learning

Prediction

Popular algorithms

Neural networks (e.g. stochastic gradient
descent, backpropagation)

Support Vector Machine

K-nearest neighbor

Decision Tree algorithms (e.g. Classification and
Regression Tree)

Random Forest (ensemble)

Uni or multivariate, linear or logistic

K-means

K-medians

Expectation Maximization (EM)
Hierarchical clustering

Apriori algorithm
Eclat algorithm

= Value based (Q-learning)
= Policy based
= Actor critic
= Policy gradient or actor-critic
= Model-free or model based
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Deep Learning Networks

= Convolutional Neural Networks

= Recurrent Neural Networks

= Long Short-Term Memory
Networks

= Autoencoders

= Deep Boltzmann Machine

= Deep Belief Networks

Bayesian Algorithms

= Naive Bayes

= (Gaussian Naive Bayes

= Bayesian Network

= Bayesian Belief Network
= Bayesian optimization

Regularization,
dimensionality reduction,
ensemble, evolutionary
algorithms, computer vision,
recommender systems, ...

this slide is not exhaustive
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reinforcement
learning

deep
reinforcement

o[+
supervised ) unsupervised

learning learning

machine
learning

artificial
intelligence
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https://arxiv.org/pdf/1810.06339.pdf
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Reinforcement learning

more than machine learning

BEHAVIOR
LEARNING =~ ~

Psychology (classical conditioning)
Neuroscience (reward system)
Economics (game theory)
Mathematics (operations research)
Engineering (optimal control, planning)
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Reinforcement learning
understanding how the human brain learns makes decisions

ima.. = O BES

https://arxiv.org/abs/1707.02286

https://www.deepmind.com/publications/playing-atari-with-

deep-reinforcement-learning
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https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286
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The RL problem

Reward hypothesis

all goals can be described by the maximization of expected cumulative

sum of a received scalar signal

Reward
scalar feedback signal R,
that indicates how well the
agent is doing at step ¢

"Reward is enough”

Goal
maximization of
cumulative reward
through selected actions

Agent
executes action
-> receives observation
- receives scalar reward

an agent must learn through trial-and-error
interactions with a dynamic environment
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https://www.sciencedirect.com/science/article/pii/S0004370221000862

interactive
The RL problem . .

Bark
Jump
Bite
Sit

interacts with its environment in discrete time steps t

Icons from the noun project
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How to cumulate reward?

Agent

\
Model

agent's representation of
the environment

Which behaviors perform well in this environment?

- agent's behaviour function
POllcy (how the agent picks its actions)

Estimate the utility of taking actions in particular states
of the environment (evaluation of the policy)

how good each state

value f““Ction and/or action are

> Prediction: evaluate the future given a policy
> Control: optimize the future (find the best policy)
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Challenges in RL

Trade-off between exploitation and exploration

« Actions may have long-term consequences
* Reward might be delayed (does not happen immediately)

I—} should the agent sacrifice immediate reward to gain more long term reward?

The agent needs to:

v" Exploit whatit has already experienced in order to obtain reward now

v" Explore the environment to select better actions in the future by
sacrificing known reward now

...and both cannot be pursued exclusively without failing at the task

1 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



The agent

Must:

= Be able to sense the state of its environment to some extent
= Be able to take actions that affect that state

= Have a goal or goals relating to the state of the environment

Markov Decision Processes

Include this 3 elements without
trivializing any of them
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

- o _ a a e
A Markov Decision Process is a 5-tuple: (S, A, jPSS,, g y) S = finite set of states

information used to determine
State

what happens next

H e\. . L

A state transition can be: Enwronment state (S ) environment's internal
Deterministic S _ f(j'[ ) representation, usually not visible to the agent

e ‘ Agent state (S?): agent's internal representation,

* Stochastic St+1~P(St41 used by the RLalgorithm to pick the next action

Observation (O):partial description of a state,
which may omit information

sequence of states and

TraJQCtory actions until time ¢

T = (So, ap, S1,A1, S, Ay, )
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

A Markov Decision Process is a 5-tuple: (S, A, jP:‘S, ?, y) S =finite set of states

st at e information used to determine
what happens next

A state transition can be: Markoy state / property - _

. Deterministic S;+1 = f(3}) A state is Markov if and only if:

« Stochastic St+1~P(St41 IP)[5t+1|5t] — P[5t+1|51,...,t]
« The state is a sufficient statistic of the future
 The future is independent of the past, given the present

Trajectory Seg.uence Otij f’:.ates and «  Once the state is known, the history may be discarded

actions until time t

state transitions of an MDP satisfy the Markov property

T = (So, ap, S1,A1, S, Ay, )
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Fully observable environments 0: =5/ =5/

= Agentdirectly observes environment state
= Necessary condition to formalize an RL problem with an MDP

Partially observable environments S/ + 5/

Agent constructs its own state representation:

= Complete trajectory: St =1
= Beliefs of environment state: S& = (P[SE = 54], ..., P[SE = 5,,])
= Recurrent neural networks: S& = o(Wo0r + WS )

- Partially observable MDP
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

. : _ a a
A Markov Decision Process is a 5-tuple: (5, A, fPSS/, S )/)

Predicts the next state
(dynamics of the environment)

State transition model / probability

a . | _ _ Probability of ending in state s’ after
SSsr — P [St+1 =S |'5t =S, A = a] taking action a while being in state s

? cee P 2:1
:11 . :1n I probabilities change overtime
= non-stationary Markov process

P =

° ° ° )
Prn1 0 Pan
Transition probabilities from all states and successor states
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Non-deterministic environment

Taking the same action in the same state on two different
occasions may result in different next states

17 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

. . | a a
A Markov Decision Process is a S-tuple: (S, <A, P Rs, V)

Ge
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Total discounted reward

Return from time step t

= Rt+1+t)/73t+2 T
= 2t=0V Ret1

“infinite-horizon discounted return”

The goal is to maximize the return

« The discount factor y € [0, 1) avoids infinite returns (sum converges)
* ltvaluesimmediate reward over delayed reward (human-like)
« Itdeals with uncertainty about the future (no perfect model of env.)

Side notes:

* There are also undiscounted Markov processes if all sequences

terminate (episodic)
 Model-based: there is an expectation of a reward (but not in model-free)
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Poli cy Map from state

to action

= Policy T completely defines how the agent will behave
= |t'sadistribution over actions given a certain state

Deterministic a = 7(s)
Stochastic: n(als) = P[A; = a|S; = 5]

Probability of taking a specific
action by being in a specific state

Given an MDP (S, A, P, R, y) and a policy m:
S7,TSI = Z T[(CllS) sc,ls/ R?gr = Z T[(CllS) :R?

aeA aecA
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1

observation

probabilities

per action

Categorical (discrete action spaces)
Gaussian (continuous action spaces)




Estimation of expected

value fu nc.tion future reward

= Used to choose between states depending on how
much reward we expect to get
= Depends on the agent's behavior (policy)

A way to compare policies

Expected return starting from

State'value fUHCtlon state s and following policy

(evaluates the policy)

an(s) = ErlGe | St = 5]

given policy

Expected return starting from state s,

ACtlon'value fu nCtlon taking action a , and following policy n

On(s,a) = EpG; | St =5, A= a]

7@ function”
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Bellman optimality equation

The state-value function can be decomposed into:

= immediate reward R, .
= discounted value of next state y v(S,. )

V(s) = E[G; | ¢ = s]
= [Rt+1 Ty Rt+2 + y2 Rt+3 | St — S] Expected value of
wherever state

Reward you expect
you land next

E
E[Ri41+ ¥V Ry + vV Regz )| 8¢ = 5]
to get from being in
E
E

[Riv1 +V Gea1l Se =]  E(6) = E(E() your current state

[Res1+ Y V(Ser1)| 8¢ = 5]
L V() =

Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)
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Bellman expectation equation

Considering the policy T we get:

V(s) = ) m(als)| RE+v ) P V()

A€EA SIES

Direct solution only for small MDPs
> System of § simultaneous linear equations with § unknowns

Other ways of solving it:
> lteratively (dynamic programming)
» Sampling (Monte-Carlo evaluation)
> Approximation (temporal-difference learning)
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Example: gridworid Actions A = (1,1,<,>)

The agent needs to get from state 0 to

Deterministic env: 7, = 1
state 15 to get out of the maze 2L ce S,/

States Rewards rodiscounty
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Example: gridworld Pandolr\n policy

Policy n(als) = P[A; = a|S; = s] =—> n(als) =rIP[T, Le, - | 8] = 0.25W

Random policy

Average of -158.82 cumulated reward

—200

—400

—600

Cumulated reward

—800

—1000

0 200 400 600 800 1000
Episode number
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Example: gridworid

Value function V© =) m(ls)|®i+y ) P4V

acA SIES

Solving simultaneously linear set of equations:
> environment's dynamics are completely known

0.5%v0 - 0.25%*vl - 0.25%v4 + 1.0 = ©

-0.25*%v0 + 0.5%v1l - 0.25*v5 + 1.0 = 0
0.25%v3 - 0.25*%v7 + 1.0 = 0O

-0.25*%v0 + 0.75*v4 - 0.25%v5 - 0.25*%v8 + 1.0 = 0

-0.25*%v1l - 0.25*v4 + 0.75%v5 - 0.25%v6 + 1.0 = 0

-0.25*%v10 - 0.25*%v5 + 0.75%v6 - 0.25*%v7 + 1.0 = 0

-0.25*%v3 - 0.25%v6 + 0.5%v7 + 1.0 = 0

-0.25*%v12 - 0.25*%*v4 + 0.5%*v8 + 1.0 = 0

0.5*%v10 - 0.25%v14 - 0.25%v6 + 1.0 = 0

0.25%v12 - 0.25*%v8 + 1.0 = 0

-0.25*%v10 + 0.5*v14 + 0.5 = 0

11 variables, 11 equations \

T — V., = policy evaluation
25 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24) how much value this policy has?



26

Example: gridworid

Value function v© =) m@s)| R +y ) PLV()

acA

Solving iteratively:
> Bellman equation becomes an update rule

Vi) < ) m(@ls) | RE+y ) Pl Vils)

a€EA SIES

Iterative Policy Evaluation, for estimating V ~ v,

Input 7T, the policy to be evaluated
V« T)’, Ve 0
Loop:

A<0

Loop foreach s € & :

V(s) « Z;r(a | 5) Zp(s’,r | s,a)[r + yV(s")]
a s'r

A — max(A, | V'(s) & Vis)|)
VeV

until A < @ (a small positive number)
Output V ~ v,

Coursera

SIES

S

Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)
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 —» V, = policy evaluation
how much value this policy has?


https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/iterative-policy-evaluation-ICAfp

turn the Bellman eq.

Dynamic programming algorithms .. . ........

Prediction: what's the value for a specific policy?

= Control: which policy gives as much reward as possible?
- the policy with more value!

> >, >, For any MDP:
A * There exists an optimal policy 7r, that is better

/\ { orequal to all other policies r, = m Vr
» All optimal policies achieve the optimal value

function V;, = V.(s) and Q. = Q.(s, a)

Value

So...do I have to calculate the value of
o 1 every policy and compare them®
0
> |A| 51 deterministic policies in an MDP
_ State » G . .
n=>nif 'Vn_(s) > V),V seS 411 =~ 4 million policies for simple gridworld example

27 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



Bellman optimality equations

Vi () = EfulGe | S¢ = s] = maxV,(s) VseS
m = Optimal value functions
Qr+(s) = max Q,(s) V seS, aeA J
T

By replacing the optimal policy on the Bellman equations we get:

|
TG0

V.(s) = max| Rs +y
a

s'es
>
Q.(s,a) =R +y Z ?SC’IS, max Q,(s',a") >
s'es a

28
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T, assigns probability 1 to
the action that receives the
highest value

maximum value over
every next possible state

Nonlinear (max), no closed-form solution

Dynamic programming solutions only
applicable if the dynamics of the system P
are known




Determining an optimal policy

V.(s) = max (RS +y Z Py s %(s'))

s'es
maximum over all actions

For any state we look at each available
action and take the one that
maximizes the argument

1, (s) = argmax <RS +vy Z Pt Ve (S'))

a s'es
particular action that

achieves that maximum —
= argmax
(greedy action) T, (S ) g . Q *

29 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



Policy improvement & iteration

improvement

Let's conmdgravalugfunctmn Vr that is non:ophmal,and we T = Vi =y = o T,
select an action that is greedy with respect to it:

evaluation

evaluation
m
m'(s) =argmax| R, +y Z P Ve(s) T vV
“ s'es T—greedy(V)
improvement

= Jfthe action has a higher value, the policy is better

= 7V, is the unique solution to the Bellman optimality eq.

= Ifthis greedy operation does not change V, then it
converged to the optimal policy because it satisfies the
Bellman optimality eq.

starting
Vr

30 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA24) Images from http://incompleteideas.net/book/ebook/node46.html



http://incompleteideas.net/book/ebook/node46.html

- = - t the Bell .
Dynamic programming algorithms . . ...
Problem | Bellmanequation | Algorithm

Prediction Expectation equation lterative policy evaluation Temporal difference
Control Expectation equation + greedy policy Policy iteration Sarsa
Control Optimality equation Value iteration Q-learning

\ )

—
when we don’t know P

Off-policy learning

On-policy: improve and evaluate the policy being used to select actions

Off-policy: improve and evaluate a different policy from the one used to select actions

> Learnatarget policy 7 (optimal policy) while...
> ...selecting actions from behavior policy b (exploratory policy)

Provides another strategy for continuous exploration (experiences a larger # of states)
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- - Learning method specialized for
Temporal dlfference Iea rnlng multi-step prediction learning
= TD learning is learning a prediction from another, later learned prediction
> learning a guess from a guess (you don't know the true V)

V(s) < V(s)+a[R+yV(s") —V(s)]

= Difference between both predictions = temporal difference
= No P model needed (unlike in dynamic programming)

= Allows you to estimate the value function before the episode is finished
I—b = Making long-term predictions is exponentially complex

> Memory scales with the #steps of the prediction
= TD model = standard model of reward systems in the brain

Q-learl‘llng Otf-policy TD control Converges to the optimal value function as
long as the agent continues to explore

9(s,a) « 9(s,a) + a[R + ymax Q(s’,a) — Q(s,a)] sampling the state-action space
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Overview of RL methods

Tabular solution methods

> lterative (dynamic programming) I » Used to solve finite MDPSs

» Sample-based (Monte-Carlo evaluation) - Value functions are stored as arrays (tables)
> Temporal-difference | eaming 1 Methods can often find exact solutions

In real-life situations, we cannot store the values of each possible state in an array,

especially in continuous problems
> Autonomous driving: array per possible image the camera sees?

E Approximate value by function
Approximate solution methods parametrized by a weight vector
> Value-based » Policy gradient < —>neural networks (learning!)
. i = Applicable to partially observable
> Policy-based > Actor-critic problems

33 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



Approximate solution methods

Value-based Policy-based
contains a value function, does not store the value
policy is implicit function, only the policy .
Sample efficient DQN, NAF

Computationally fast
Unstable (bias, don't know true V)

quipy gradie_nt Actor-critic
optimizes parametrized stores both the policy

policies with gradient descent and value function
Convergence guarantees ACER AZC/ASC SAC
Sensitive to stepsize choi ’ ’
Poorsampleefcency PFO, TD3,
Large variance DDPG
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Policy Gradient

Parameterize the policy with a parameter set 6 T = mg(als) Retuen
E.g. using a Neural Network L/_ UL b
Optimize the cumulative reward meaX](Tl'g) = Eg, [Z ytrt]

t
Generic gradient ascent step: 0«0+ aVy/(my)

How to calculate the gradient?

Policy Gradient Theorem

o) () o By | ) Quls,0)Vmy(als)

35 Andrea Santamaria Garcia - Introduction to Reinforcement Learning (RL4AA'24)



Reinforce

» Initialize the policy parameter 6 at random
* Loop forever:
* Generate an trajectory (episode) using g : So, Ao, Ry, S1, A1, .-,
 Loopforeachstepinepisodet = 0,1,...,T — 1: Gradient update after
* Estimate the return G; sampling the whole
e Perform one gradient update: 8 « 6 + a y£G,Vyln my(4,|S,) ©Ps09e

Monte-Carlo Sampling

The MC-estimate has a high variance, we can subtract an unbiased baseline from G;

Common choice is the state-value function:

Advantage function: =Q(s,a) —V(s)

Use actor and critic to approximate the functions
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Trust-region Policy Optimization (TRPO)

Idea: constrain the policy updates within a small trust-region, using KL-divergence as a

difference measure between the new and old policies
Importance sampling

.o TTRPO (Y — 1 | _e(alS) ]
maximize | (9) E[ﬂeold(alS) ,

subjectto KL(mg,,,||lmg) < &

Note: Even though TRPO is an on-policy algorithm, the
policy being optimized my is not always the behaviour

policy mg_,,

https://jonathan-hui.medium.com/rl-trust-region-policy-
optimization-trpo-explained-abee04eeeee9

TRPO guarantees a monotonic
improvement over policy iteration!
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Proximal Policy Optimization (PPO)

TRPO has nice sample efficiency and improvement guarantees, but is complicated to optimize

PPO uses a clipped reward so that the ratio between the policies stays within a small interval

TRPO reward Clipped reward e.g.in [0.8, 1.2]
JPPO(9) = E [ min (r(0) ,clip(r(0),1 —€,1+¢) )]
ith (9) __ mp(als) A>0: Better than A<QO: Worse than
with = T, (@IS) ‘r,gLemolAd> %oolicy the olgd policy
1—€l
0 1 i+€ " LCLIP ‘
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I T T

Deep Q Network Off-policy Discrete Continuous Q-value
DDPG Deep'Determ‘lnlstlc Off-policy Continuous Continuous Q-value
Policy Gradient
Asynchronous
A3C Advantage Actor- On-policy Continuous Continuous Advantage
Critic Algorithm
Trust Region Policy : : :
TRPO Optimizati On-policy Continuous Continuous Advantage
ptimization
PPO P(r)om.ma'l Pgllcy On-policy Continuous Continuous Advantage
ptimization
Twin Delayed Deep
D3 Deterministic Policy Off-policy Continuous Continuous Q-value
Gradient
SAC Soft Actor Critic Off-policy Continuous Continuous Advantage
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Thank you for
your attention!

What questions do you
have for me?

Sutton & Barto book
https://arxiv.ora/pdf/cs/9605103.pdf
Reinforcement learning lectures by David Silver
https://spinningup.openai.com/en/latest/

Coursera RL specialization
https://arxiv.org/pdf/1810.06339.pdf

Let's connect! andrea.santamaria@kit.edu / @ansantam
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