Tutorial RL4AA'24

Concepts to overcome challenges in applying RL to accelerators - from deep meta-RL to safe shallow model-based RL

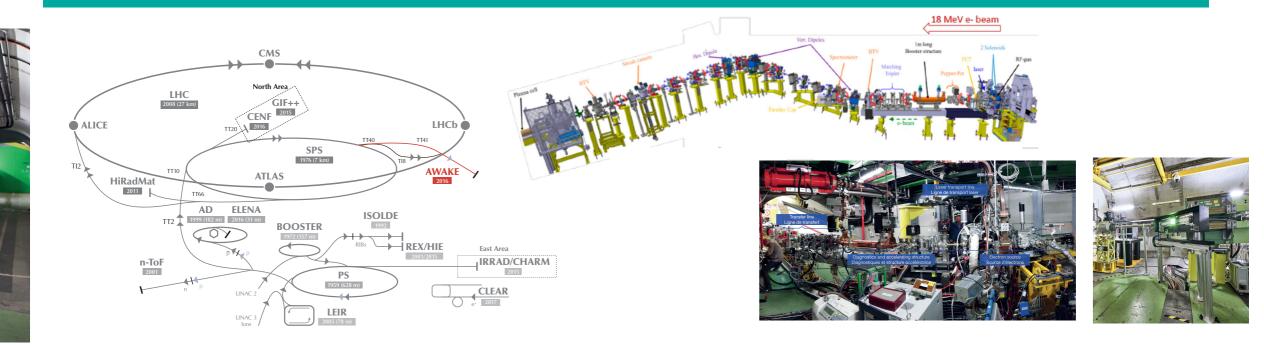
Simon Hirlaender, Sabrina Pochaba, Lukas Lamminger, Nico Madysa, Andrea Santamaria Garcia, Jan Kaiser, Chenran Xu, Annika Eichler

Goal of this tutorial

- Extend our toolbox there is no one-fits all solution
- Give you concepts at the boundary of RL
- Fresh ideas to attack your RL problem you should be aware of

Problem set up

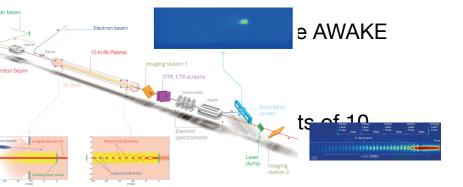
CCTI AWAKE steering problem



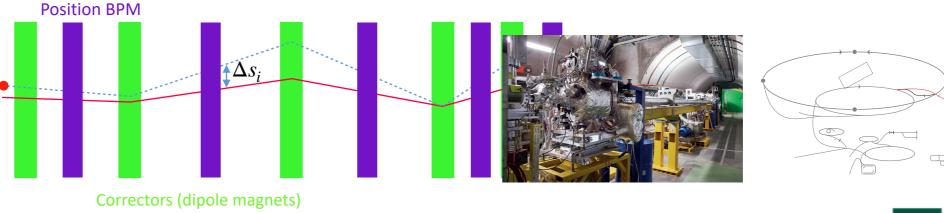
 AWAKE electrons - start 5 MV (RF gun), accelerated to 18 MeV transported plasma cell.

- Vertical 1 m step and a 60° bend bring electron beam parallel SPS proton
- The trajectory is controlled with 10 horizontal and 10 vertical steering dipo beam position monitors (BPMs).

Tutorial RL4AA



Simon Hirländer



Electron spectrometer

Laser dump

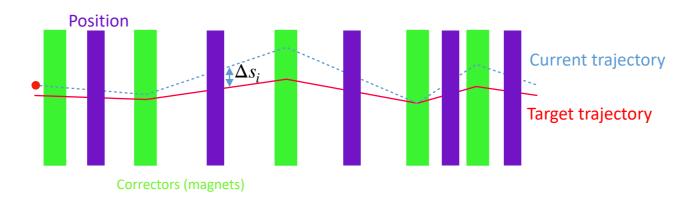
Imaging

CERN AWAKE steering problem

- Well studied in several papers/thesis
- Linear Dynamics with 10 degrees of freedom
- Non-trivial due to action limitations
- Analytical solution for the optimal policy
- Easy to understand, focus on the RL problem not the MDP
- The simulation corresponds exactly to the real system (measured optics)
- All our algorithms were tested on the real machine

CERN AWAKE steering problem MDP

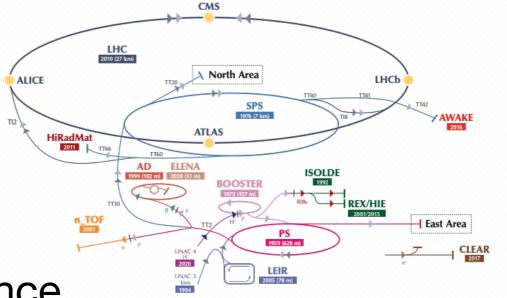
Markov decision process: (S, A, R, P, ρ_0 , γ)



- 10 continuous states S and actions $A \in [-1,1]$ (10 DoF problem observation is state)
- Rewards *R* negative of RMS of states $r_i \propto -\sqrt{\sum \Delta s_i^2}$
- Actions are done in $s_{t+1} = \mathbf{R}a_t + s_t$
- Episodic training
- Initial criteria: Initial distribution ρ_0 is away from low RMS to make problem a bit challenging
- Termination criteria:
 - Maximal number of interactions (truncation)
 - ➡ RMS below measurement uncertainty
 - States s_i > beam pipe
- Transitions *P* are deterministic, $\gamma = 1$
- If we speak about different tasks i (MPDs) we mean different optics \mathbf{R}_i

RL in accelerator control

- Goals:
 - Set performance
 - Quickly recover performance
 - Maintain performance
 - Adapt to user changes



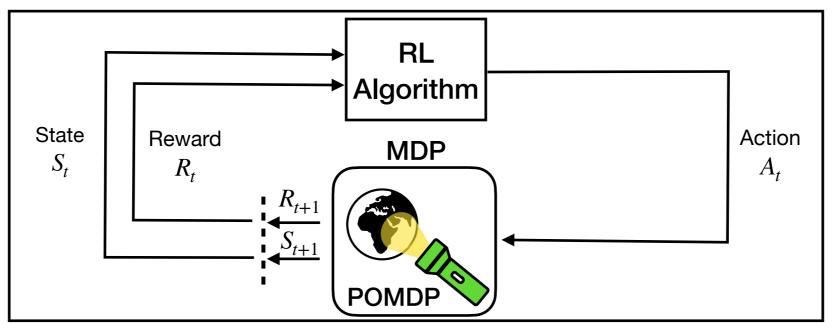
RL and accelerators - still rare

Effectively understand and optimise require significant expertise and computational resources.

Challenges and problems, both the RL algorithms and the physical system

- Data Availability:
 - Slow and little data acquisition, maybe safety regulations
 - Modelling and Simulation Limitations
 - ➡ Long times needed to adjust after faults, resets, changes
- Integration with Existing Systems
- Long-term Stability and Maintenance
- General Safety and Reliability
- Real-Time Decision Making
- Computational Resources
- Generalisation and fast Adaptation

The entire problem



MDP Markov decision process POMDP Partially observable Markov decision process

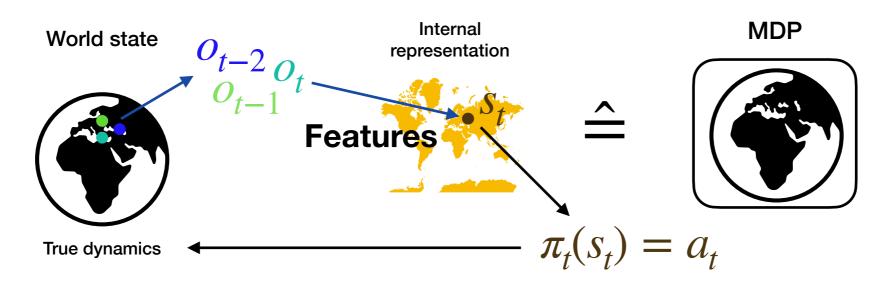
Simon Hirländer

Wellcome to POMDPs

Simon Hirländer

Problem design - capture the right thing

- Solve an SDM problem: Information \rightarrow Decision \rightarrow Information \rightarrow Decision \rightarrow ...
- Generally stochastic!
- Consequently we build a feedback system not planing too far in the future:
 - Define a <u>state</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}...)$, as a function holding <u>sufficient statistics</u> until time step *t* for a decision (example pong)
 - Decision based on s_t via: $a_t = \pi_t(s_t)$ the policy optimise an expected aggregate of future rewards



- Rarely the observation *o* is the state *s*, the world state is, but often we assume it is certainty equivalence!
- POMDP \Rightarrow MDPs!

How bad is it?

- Linear POMDP: believe state $O_t = h_t(S_t, A_t, W_t)$
 - Static output feedback is NP hard (linear in O_t and dynamics)
 - ➡ General POMDPs are PSPACE hard
- There are ways out separation principle:
 - → Filtering $\hat{s}_t = f(\{o_t\})$ prediction problem
 - ➡ Action based on <u>certainty equivalence</u>
 - Optimal filtering if dynamics are linear and noise is Gaussian Kalman filtering general belief propagation - LQG
 - Kalman filtered state <u>optimal in estimation and control</u>
 - → Estimate state with prediction $S_t = h(\tau_t)$, τ_t are time lags

POMDPs and non stationarity

- To find a proper state we have to solve the <u>additional prediction problem</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}...)$
- In the non-stationary, finite horizon formulation the MDP has the form $(S, A, \{P\}_h, \{r\}_h, H, \rho_0) \Rightarrow$ Value-functions $Q_h(s, a)$ get time depended \Rightarrow similar form of Bellman equations
- We can incorporate time into state e.g. $\tilde{s} = (s, h) \Rightarrow$ standard MDP
- Generally Bellman equation nice in discounted, stationary formulation ⇒ this is what we usually see and most libraries build on this formulation

Challenges of RL

- 1. Problem formulation capturing the right problem in an MDP
 - → State representation, Markov Property (e.g. non stationarity)
 - Reward engineering
 - ⇒ ...
- 2. RL core issues:
 - Sample efficiency
 - ➡ Stability
 - ➡ Run time
 - → Hyper-parameter tuning
 - ➡ Exploration
 - ➡ Safety
 - Robustness to Changes, Generalisation
 - ⇒ ...

RL core issues

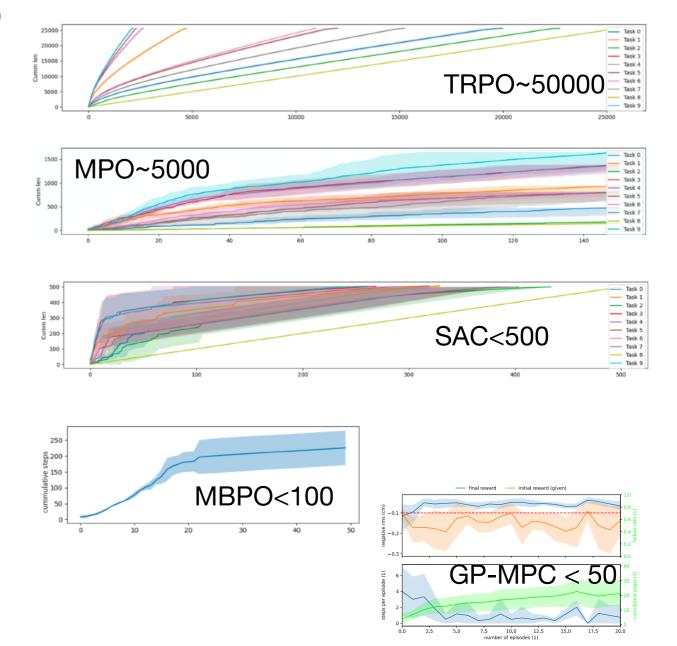
RL - core issues

- Sample efficiency
- Stability
- Run time
- Hyper-parameter tuning
- Exploration
- Safety
- Robustness to Changes
- Generalisation

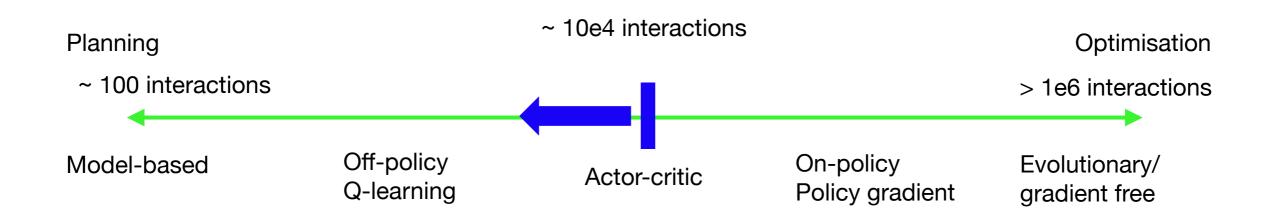
Sample efficiency

- > 10e6 interactions
 - Derivative free methods: (NES, CMA,..)
 - 10 x Online methods (A3C)
 - 10 x Policy-gradient methods (TRPO)
 - 10 x Replay-Buffer + Value function estimation (Q-Learning, DDPG, TD3, NAF, SAC,...)
 - 10 x Model-based RL methods (MPO, Guided Policy Search, Dyna)
 - 10 x Model-based shallow methods (no NNs) Few shot GPs...
- < 100 interactions

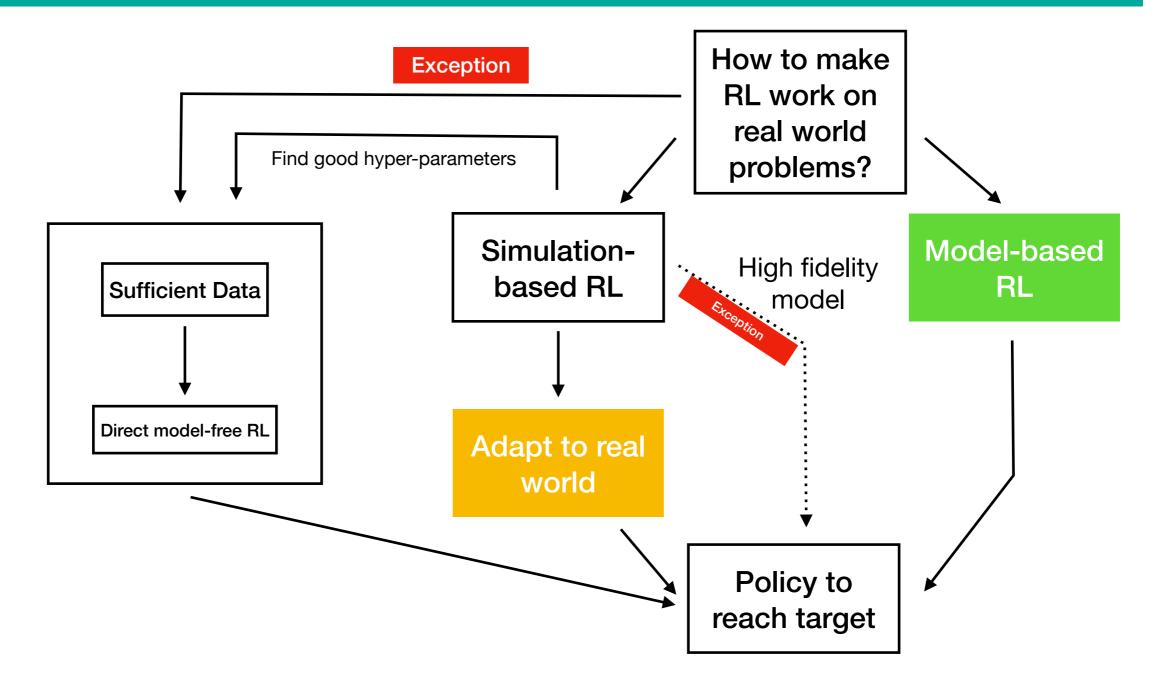
Colours are different tasks (optics)



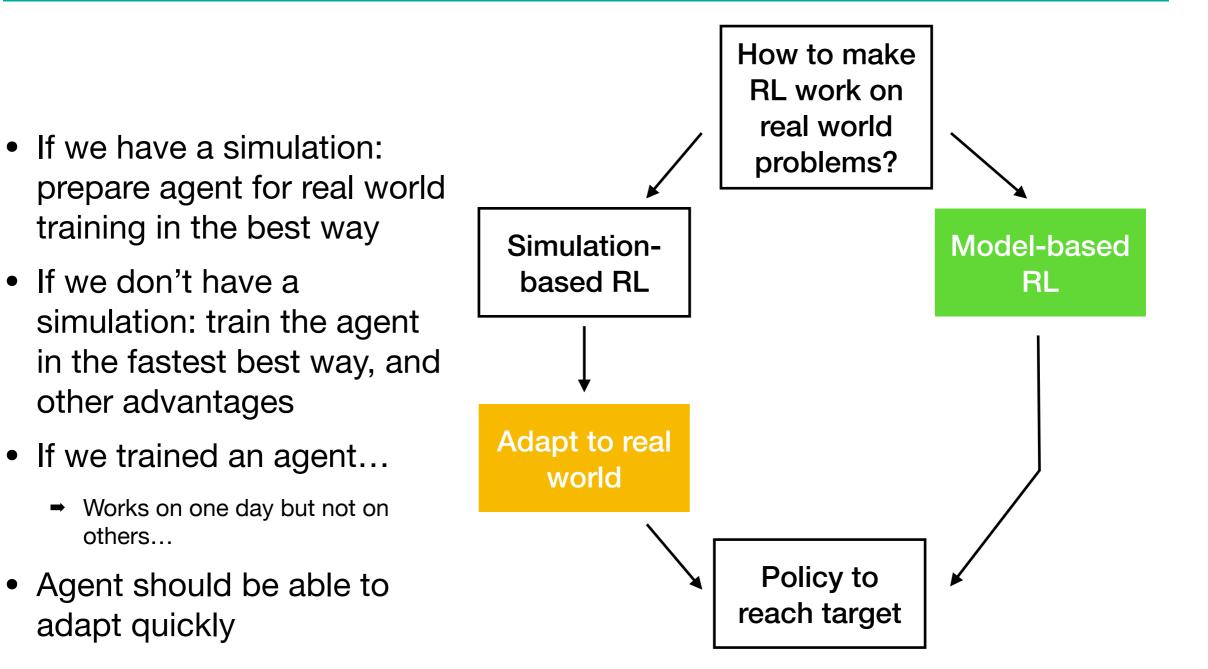
But sample efficiency is not all



Scenarios RL2Real

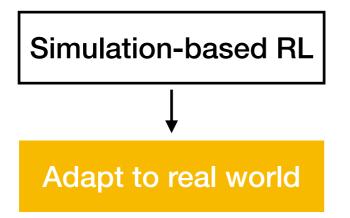


Scenarios RL2Real



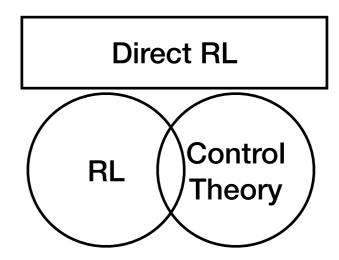
Two concepts at the boundary of RL

Part I - Meta RL



- Meta RL
- Adapts quickly to changes
- Brings nice properties

Part II: safe shallow model-based RL

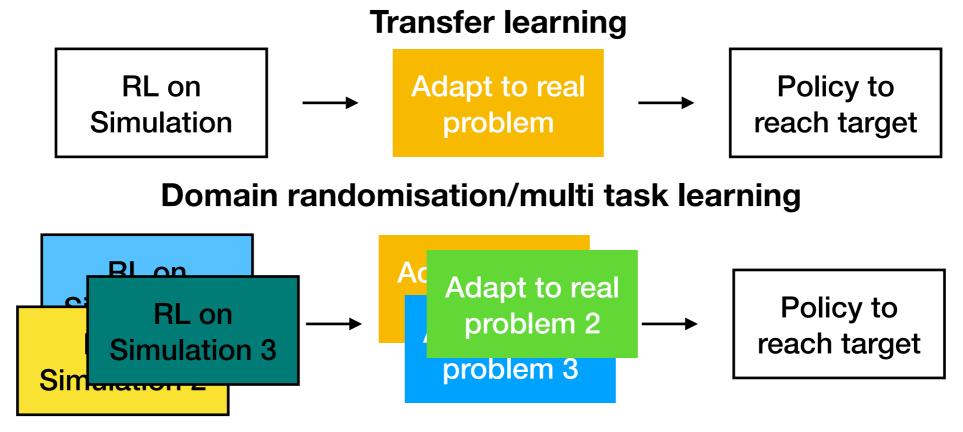


- RL towards control theory (leverage concepts from control theory)
- "The Bayesian optimisation of RL"
- Extremely sample efficient

Part I - Meta RL

Motivation

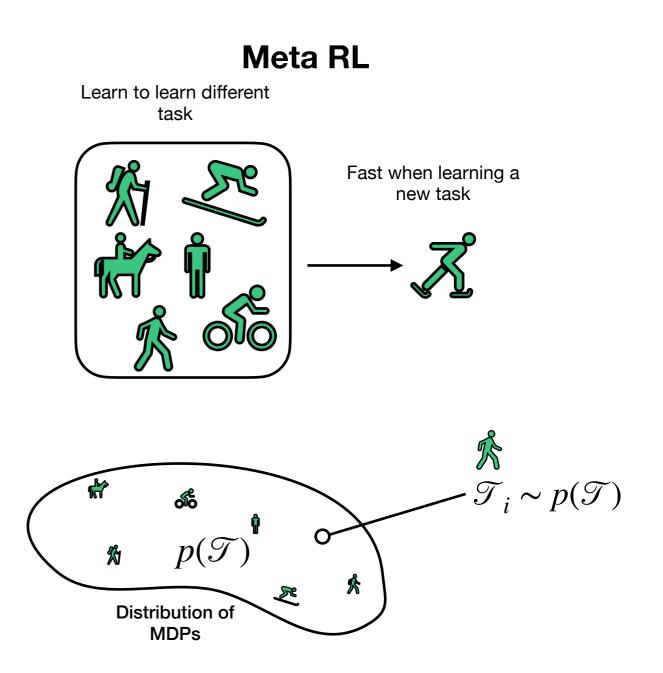
- How we can use experience from some source domain to get into a position, where we can solve more efficiently or effectively new downstream tasks?
- Transfer learning: Using experience from one set of tasks for faster learning and better performance on a new task



Can we do this smarter? \rightarrow Meta-learning

What is meta-RL?

- Can the knowledge acquired from learning many different tasks be leveraged to <u>expedite and improve the</u> <u>learning</u> process for new tasks?
- Meta-learning = learn to learn
- Comes in many flavours we focus on gradient based meta-learning
- Closely related to multi task learning- in multi-task is the task provided explicitly
- Meta-learning distinguishes itself by its ability to infer tasks and its <u>explicit</u> focus on rapidly adapting to new task

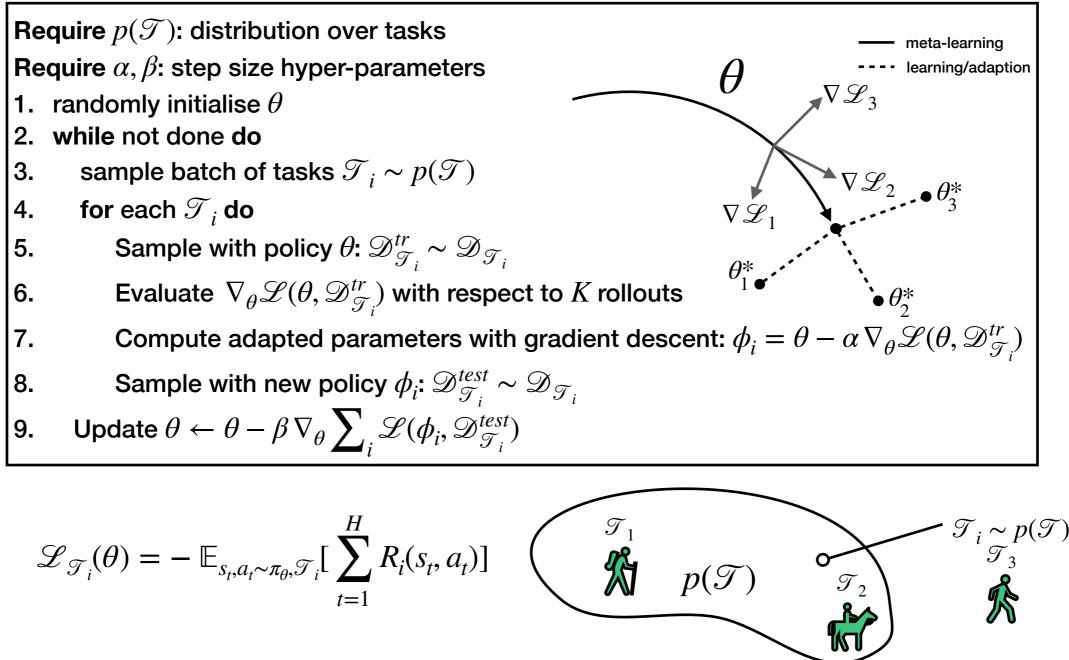


Model Agnostic Meta Learning (MAML)

Why MAML is a good idea

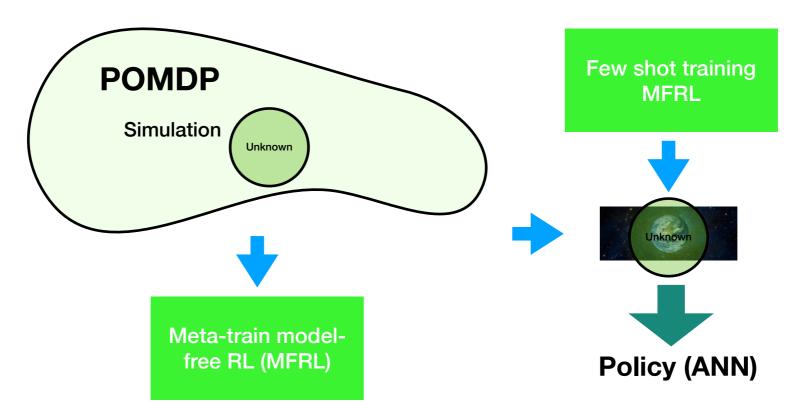
- MAML is universally applicable beyond our specific scenario:
 - ➡ It can be implemented across various optimization problems.
 - The required gradients (to second order) can be efficiently computed using automatic differentiation.

Meta RL via gradients



- TRPO used for meta optimization
- Policy gradient with GAE (Schulmann 2015) as RL algorithm fast and stable

Meta RL (in accelerator control)

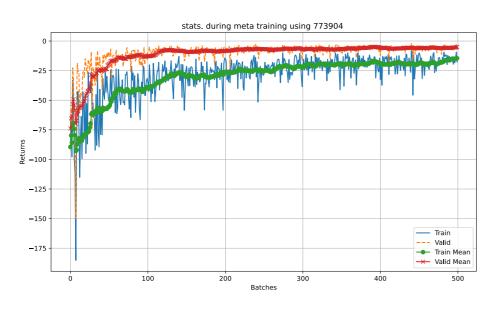


- Possible scenarios:
 - Inaccurate simulation \rightarrow Prepare agent for real training in reliable and fast way
 - Non-stationarity \rightarrow Environment changes regularly, fast, stable retraining
 - Several similar computational demanding problems \rightarrow Common pre-training

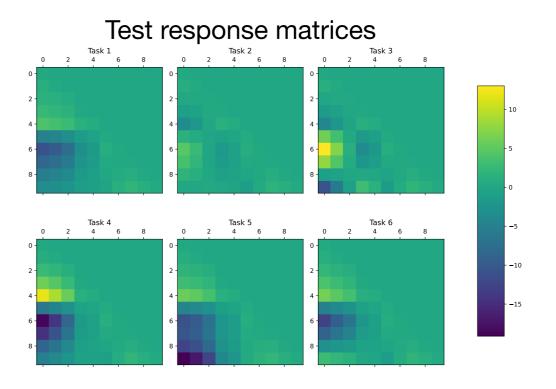
^{• ...}

Our set-up

- Assume we don't know the optics (quadrupole settings) in advance
- Different optics are generated (quadrupoles are varied) within a uniform distribution centred on the real settings
- To assess progress, five optics, and the real optics, are fixed and progress is monitored

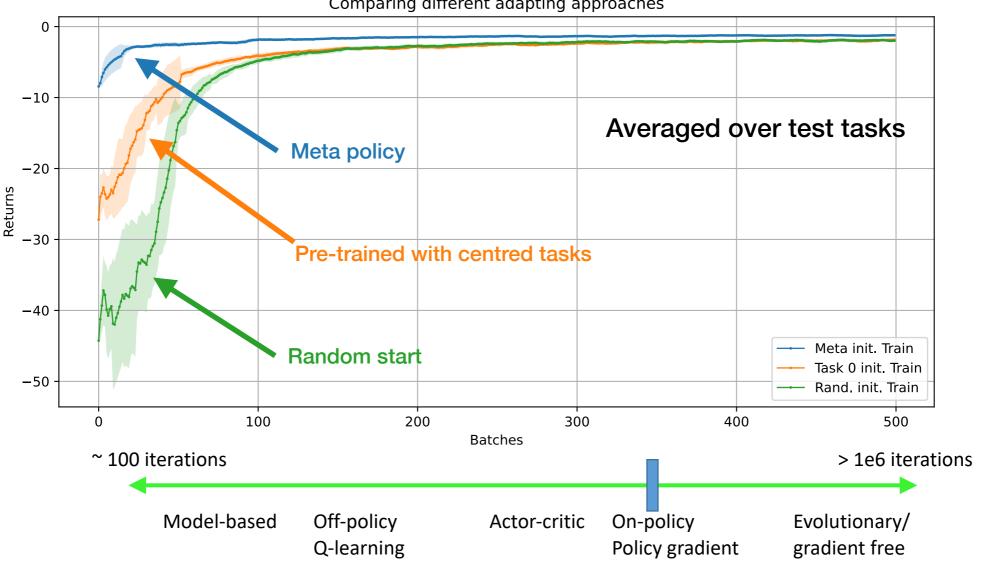






Experiments Overview

- Stable and monotonic training from meta policy
- Quick adaption to actual setting few shot adaption



Comparing different adapting approaches

Demonstrated on the machine with Lukas and Verena

Simon Hirländer

Part II: safe shallow model-based RL

34

Tutorial RL4AA



35

Simon Hirländer

(Fast) RL with guarantees - a dream?

What if we'd know the model: optimal control

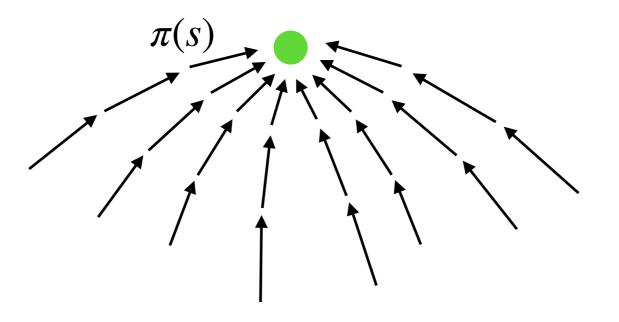
Three main ingredients

- Mathematical description of the system to be controlled (state-space models)
 - ➡ We use MDPs
- Specification of a performance criterion (the cost function)
 - ➡ The reward designed by us (or emitted by the environment in RL setting)
- Specification of constraints
 - Control or state constraints

Model assumptions

- Discrete time
- A stochastic dynamics with Markov property: $\mathbf{s}_{t+1} = \mathbf{f}(\mathbf{s}_t, \mathbf{a}_t, \omega_t)$ with $\omega_t = \omega_{t-1}(\mathbf{s}_t, \mathbf{a}_t)$
- Later ω_t is normally distributed
- In stochastic settings optimise for an expected reward

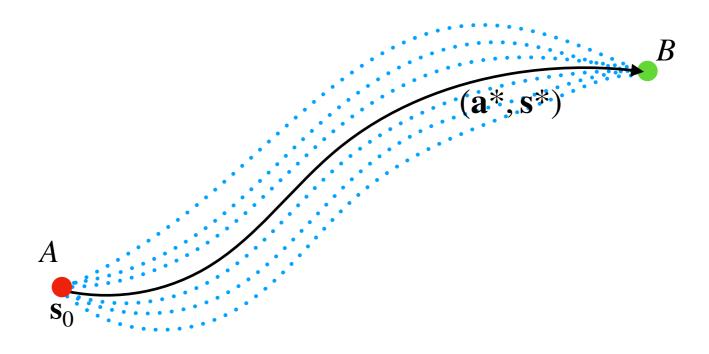
Solution 1: Dynamic programming



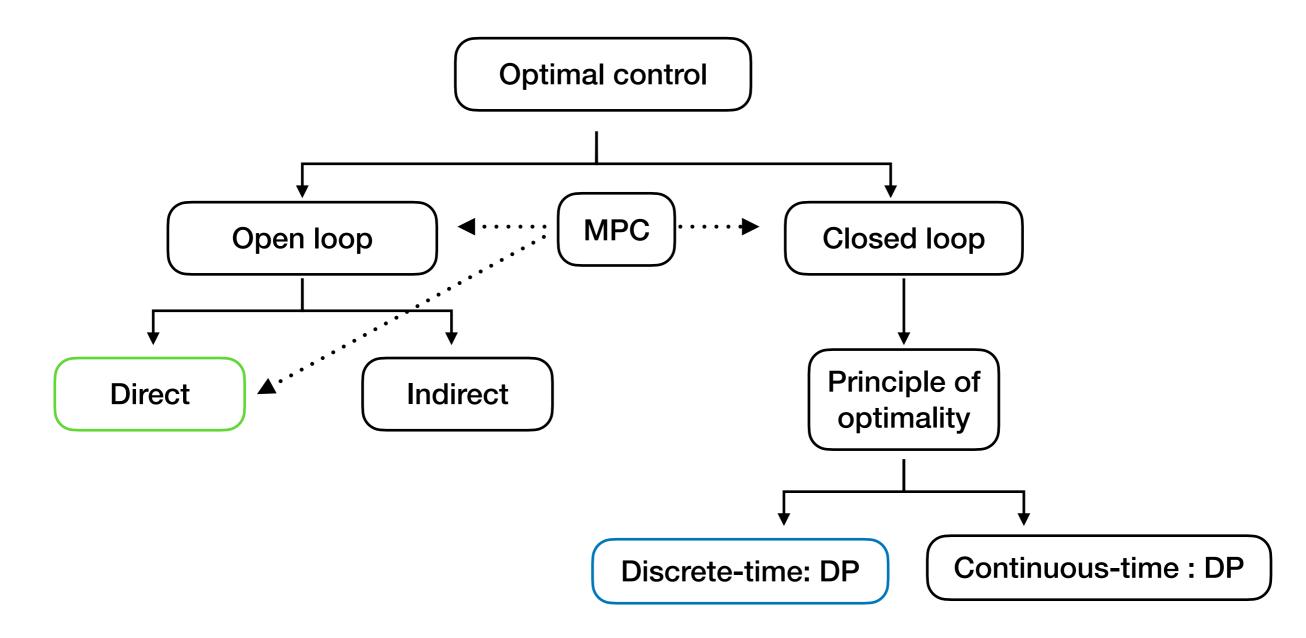
- Dynamic Programming (Principle of Optimality sufficient condition)
 - Compositionality of optimal paths
 - Closed-loop solutions: find a solution for all states at all times
- Solvable via Bellman equation in a backward recursive fashion
- Algorithms as e.g. Value iteration, Policy iteration (see Sutton and Barto)
- No direct notion of constraints for states or actions!

Solution 2: Non-feedback control

- Calculus of Variations Pontryagin Maximum Principle PMP (necessary condition)
- PMP turns functional minimisation in a function minimisation at each point in time
- Find a solution-sequence (a^*, s^*) for a given initial state s_0
- Can handle constraints e.g. $\mathbf{s}_t \in S$, $\mathbf{a}_t \in A$
- But: open loop cannot stabilise the system!



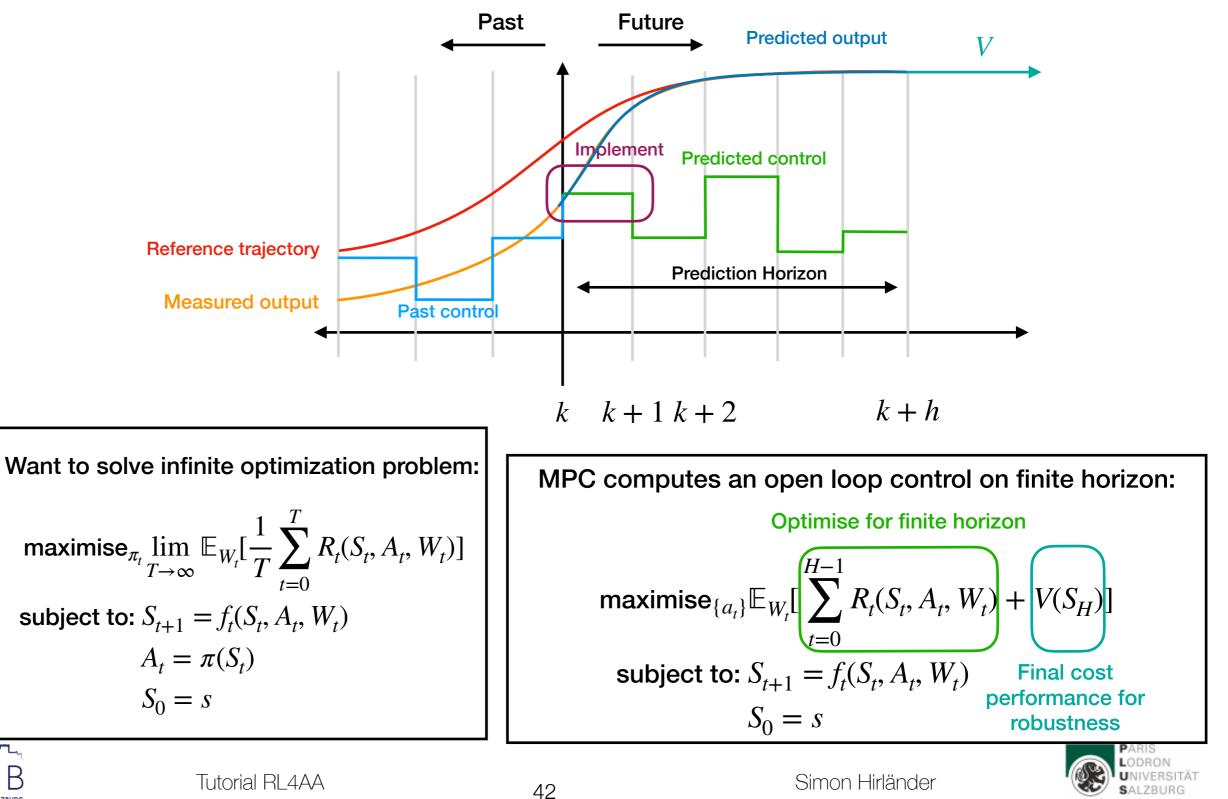
Best of both worlds - model predictive control (MPC)



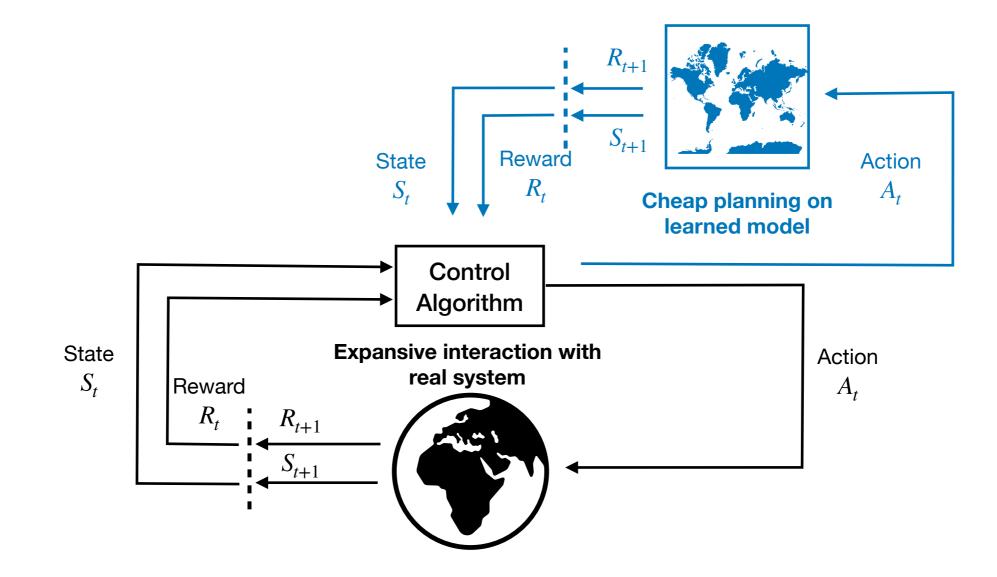
Adapted from AA 203: Optimal and Learning-Based Control

Simon Hirländer

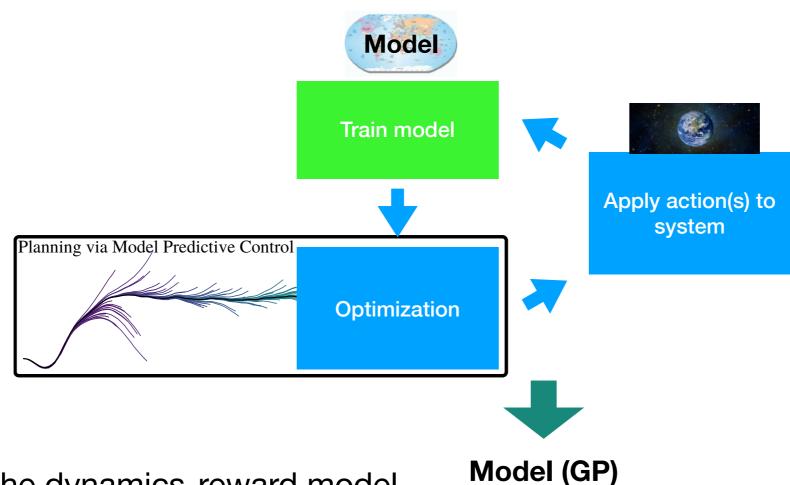
MPC Idea



Back to RL - no model



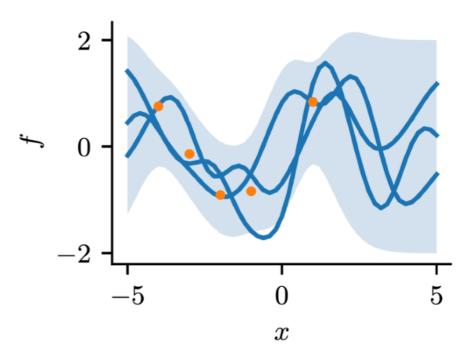
GP-MPC the BO of RL



- Setup the dynamics-reward model
- Use PMP to obtain sparse optimization with gradient information
- Choose optimization algorithm
- Consider safety (constraints)
- Set up training

We don't know the model

Example of GP



- Learn the model from data:
 - → Aleatoric uncertainties
 - ➡ Epistemic uncertainties minimise model bias
- Gaussian processes (GPs) are used assuming $\mathbf{s}_{t+1} = \mathbf{f}(\mathbf{s}_t, \mathbf{a}_t, \omega_t)$ and $\omega_t \sim \mathcal{N}(0, \sigma)$
- Include if needed the emitted reward
- Use RBF Kernel allow for analytical propagation of uncertainties
- Standard GPs training: evidence maximization

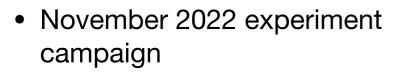
Uncertainty propagation

- Moment matching for <u>deterministic propagation</u> of the mean $\mu(s_t)$ and the covariance $\Sigma(s_t)$ of the distribution of dynamics-reward model
- The immediate performance measure is: $\mathbb{E}[r(s_t, a_t)] = \int r(s_t, a_t) \mathcal{N}(s_t | \mu_t, \Sigma_t) ds_t$
- If reward not emitted formulated as polynomial function

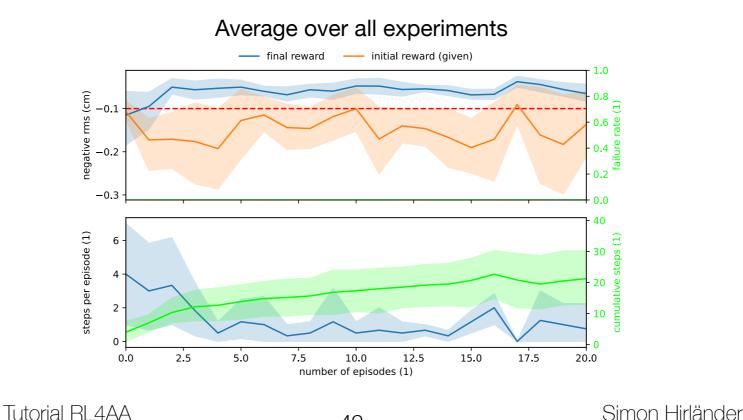
Fast optimisation

- From PMP a sequence of a constraint optimisation for each time step
- Dynamics-Lagrangian-multipliers in closed-form, Hamiltonian gradient same as Reward gradient
- Optimisation (analytical) up to (second) order in dynamics-reward model
- State and action constraints (analytical) up to second order
- "An interior point algorithm for large-scale nonlinear programming" -"trust-constr" used for experiments (we use BFGS)

Tests on the machine - few shot RL



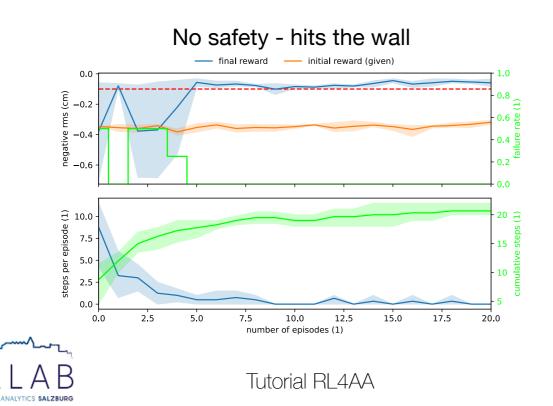
- Adjusted on simulations
- Learns from scratch in a few steps
- Rapidly stabilises system

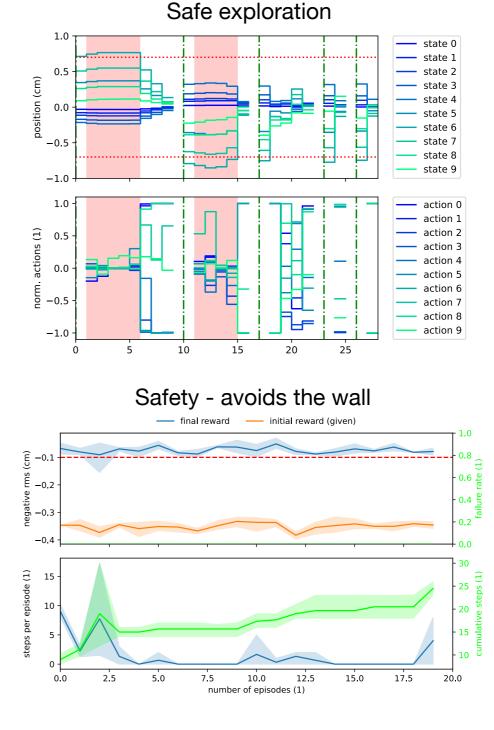


Incorporate considerations for safety

- Try to avoid hitting the wall
- Chance constrains:

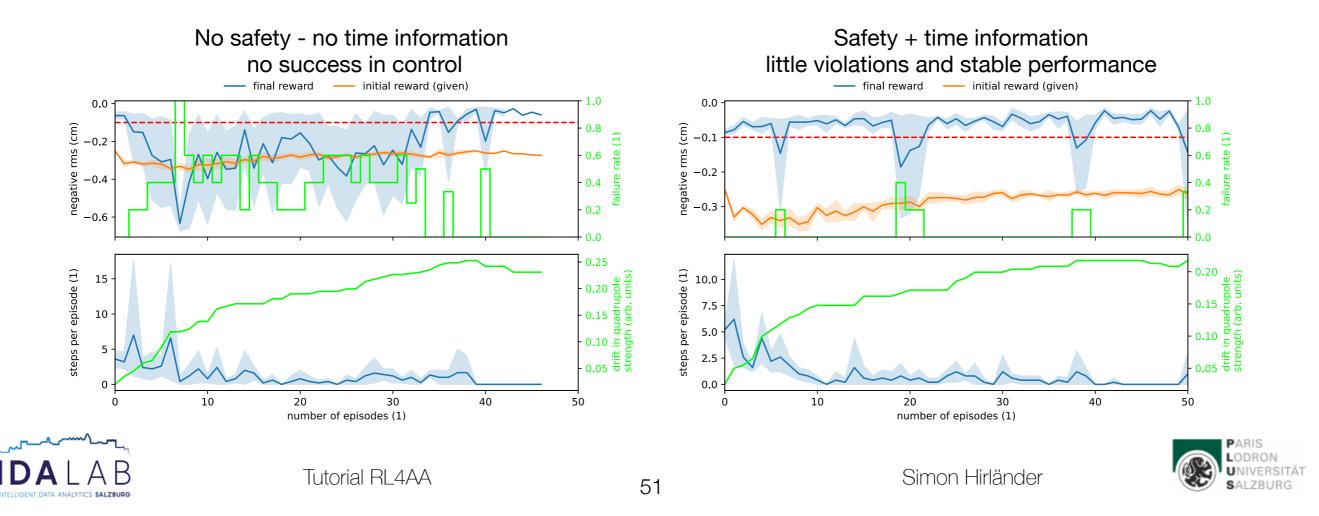
 ℙ(|s| > threshold) ≥ ε→ safe policy is activated (red shaded)
- Two layer safety: longterm safety (for optimal control) and instant safety (for safe exploration)
- Initial settings close to wall to test safeness





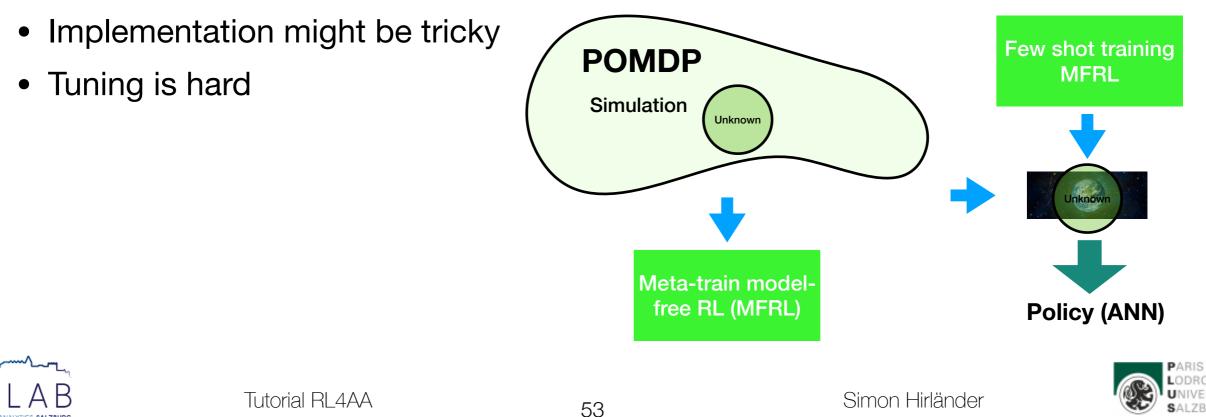
Non stationarity and safety

- Optics was distorted with a detuning of the quads by up to 20% with low timescale
- State was extended to incorporate the time step $s \rightarrow (s, t)$
- More weight on recent timepoints
- Safety also considered



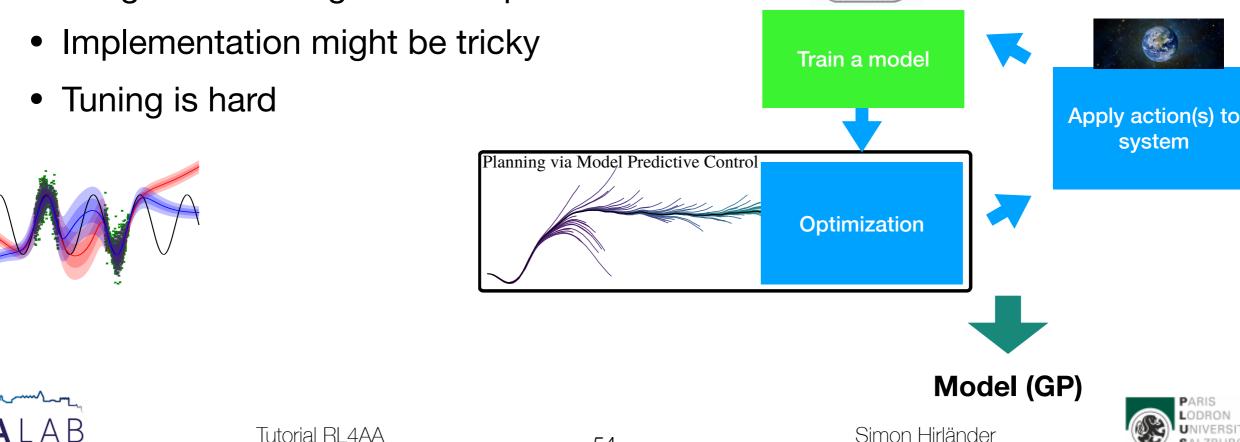
Key points - meta RL

- MAML leads to rapid and stable adaption, generalisation is good
- General simple and elegant concept (also applicable e.g. to BO)
- Stable and computationally fast and simple algorithms used (hardware)
- In the best case monotonic improvements during training (non destructive)
- Simulation needed covering the true problem as convex hull
- Meta training might be computational intense



Key points - GP-MPC

- Extremely sample efficient
- Can handle constrains
- GP is non-parametric \rightarrow computational intense, scales badly
- Only model is stored, optimization based control
- Long horizons might be computational intense



54

Model

Summary

- Machine learning is always a trade-off between several criteria (no free lunch) - the more tools the better
- The unique characteristics of the accelerator domain and real-world limitations narrow down the range of methods available, making the implementation of reinforcement learning a complex task
- Two RL methods are showcased to guide new research and ultimately achieve operational RL

Thanks for your attention

Now let's have fun

Tutorial RL4AA

References

- Courses online:
 - ➡ Chelsea Finn (Berkley): <u>Deep Multi-Task and Meta Learning</u>
 - Sergey Levine (Berkley): <u>Deep Reinforcement Learning</u>
 - → Emma Brunskill (Stanford): Reinforcement Learning
- Papers:
 - C. Finn, P. Abbeel, and S. Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks." 2017: <u>https://arxiv.org/abs/1703.03400</u>
 - S. Kamthe and M. Deisenroth, "Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control," in *Proceedings of the Twenty-First International Conference on* Artificial Intelligence and Statistics, A. Storkey and F. Perez-Cruz, Eds., in Proceedings of Machine Learning Research, vol. 84. PMLR, 2018, pp. 1701–1710. [Online]. Available: <u>https://proceedings.mlr.press/v84/kamthe18a.html</u>
 - A. Girard, C. E. Rasmussen, J. Quinonero- Candela, and R. Murray-Smith. Gaussian Process Priors with Uncertain Inputs-Application to Multiple-Step Ahead Time Series Forecasting. Ad- vances in Neural Information Processing Systems, 2003.
 - S. Hirlaender, L. Lamminger, G. Zevi Della Porta, and V. Kain, "Ultra fast reinforcement learning demonstrated at CERN AWAKE," JACoW IPAC, vol. 2023, p. THPL038, 2023, doi: 10.18429/JACoW-IPAC2023-THPL038 <u>https://cds.cern.ch/record/2886522/files/document.pdf</u>
 - → J. Beck et al., "A Survey of Meta-Reinforcement Learning." 2023: https://arxiv.org/abs/2301.08028
 - J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, "Trust Region Policy Optimization." 2017: https://arxiv.org/abs/1502.05477
 - J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, "High-Dimensional Continuous Control Using Generalized Advantage Estimation." 2018: <u>https://arxiv.org/abs/1506.02438</u>
- Books:
 - R. S. Sutton, Reinforcement learning, Second edition. in Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2020 <u>http://incompleteideas.net/book/the-book.html</u>
 - A. Agarwal, N. Jiang, S. M. Kakade, W. Sun: Reinforcement Learning: Theory and Algorithms, 2022 <u>https://rltheorybook.github.io/</u>
 - ► K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022. <u>https://probml.github.io/pml-book/book1.html</u>
 - ➡ K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. <u>http://probml.github.io/book2</u>
 - D. Liberzon, Calculus of variations and optimal control theory. Princeton, NJ: Princeton University Pres, 2012, http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html
 - F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems. Cambridge: Cambridge University Press, 2017
- Other resources:
 - S. Hirlaender, Advanced concepts in RL, 2023 (RL4AA23 Lecture) https://github.com/RL4AA/RL4AA23/blob/main/slides/Hirlaender_advanced_concepts.pdf
 - S. Boyd, Convex Optimization: <u>https://web.stanford.edu/class/ee364b/lectures.html</u>

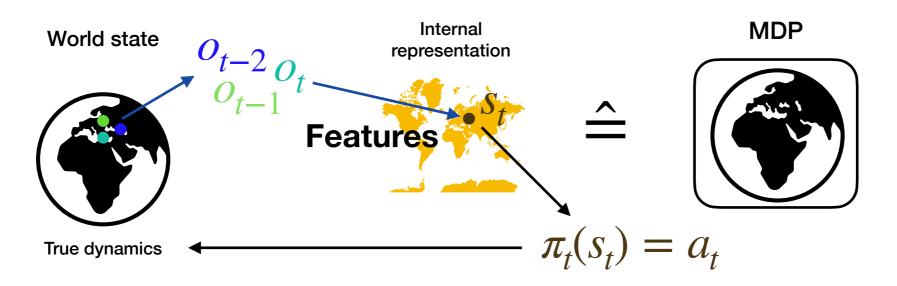
Problem formulation - capturing the problem in an MDP

Wellcome to POMDPs

Simon Hirländer

Problem design - capture the right thing

- Solve an SDM problem: Information \rightarrow Decision \rightarrow Information \rightarrow Decision \rightarrow ...
- Generally stochastic!
- Consequently we build a feedback system not planing too far in the future:
 - Define a <u>state</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}...)$, as a function holding <u>sufficient statistics</u> until time step *t* for a decision (example pong)
 - Decision based on s_t via: $a_t = \pi_t(s_t)$ the policy optimise an expected aggregate of future rewards



- Rarely the observation *o* is the state *s*, the world state is, but often we assume it is certainty equivalence!
- POMDP \Rightarrow MDPs!

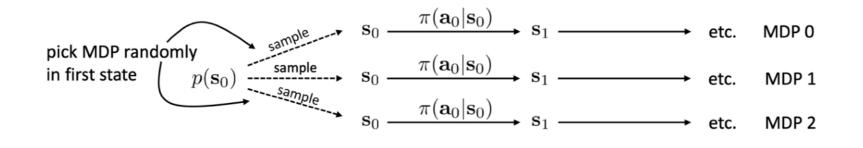
How bad is it?

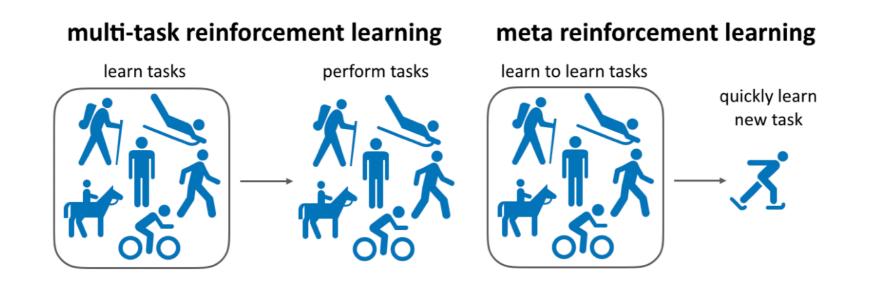
- Linear POMDP: believe state $O_t = h_t(S_t, A_t, W_t)$
 - Static output feedback is NP hard (linear in O_t and dynamics)
 - General POMDPs are PSPACE hard
- There are ways out separation principle:
 - → Filtering $\hat{s}_t = f(\{o_t\})$ prediction problem
 - ➡ Action based on <u>certainty equivalence</u>
 - Optimal filtering if dynamics are linear and noise is Gaussian Kalman filtering general belief propagation - LQG
 - ➡ Kalman filtered state <u>optimal in estimation and control</u>
 - → Estimate state with prediction $S_t = h(\tau_t)$, τ_t are time lags

POMDPs and non stationarity

- To find a proper state we have to solve the <u>additional prediction problem</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}...)$
- In the non-stationary, finite horizon formulation the MDP has the form $(S, A, \{P\}_h, \{r\}_h, H, \rho_0) \Rightarrow$ Value-functions $Q_h(s, a)$ get time depended \Rightarrow similar form of Bellman equations
- We can incorporate time into state e.g. $\tilde{s} = (s, h) \Rightarrow$ standard MDP
- Generally Bellman equation nice in discounted, stationary formulation ⇒ this is what we usually see and most libraries build on this formulation

Multi task vs meta RL





Direct policy search

- RL as derivative free optimization:
 - → maximise_{$z \in \mathbb{R}^d$} R(z) ⇒ maximise_{p(z)} $\mathbb{E}_p[R(z)]$
 - → Parametrise a distribution $p(z; \theta) \Rightarrow \text{maximise}_{p(\theta)} \mathbb{E}_{p(z; \theta)}[R(z)]$
 - Likelihood trick estimate the derivative:

$$\nabla_{\theta} J(\theta) = \int R(z) \nabla_{\theta} p(z;\theta) dz = \int R(z) \frac{\nabla_{\theta} p(z;\theta)}{p(z;\theta)} p(z|\theta) dz$$

$$= \int R(z) \nabla_{\theta} \log p(z;\theta) p(z|\theta) dz = \mathbb{E}_{p(z;\theta)} [R(z) \nabla_{\theta} \log p(z;\theta)]$$

- Unbiased gradient estimate of *J*, if sample efficiently from $p(z; \theta)$ and $\log p(z; \theta)$
- High variance

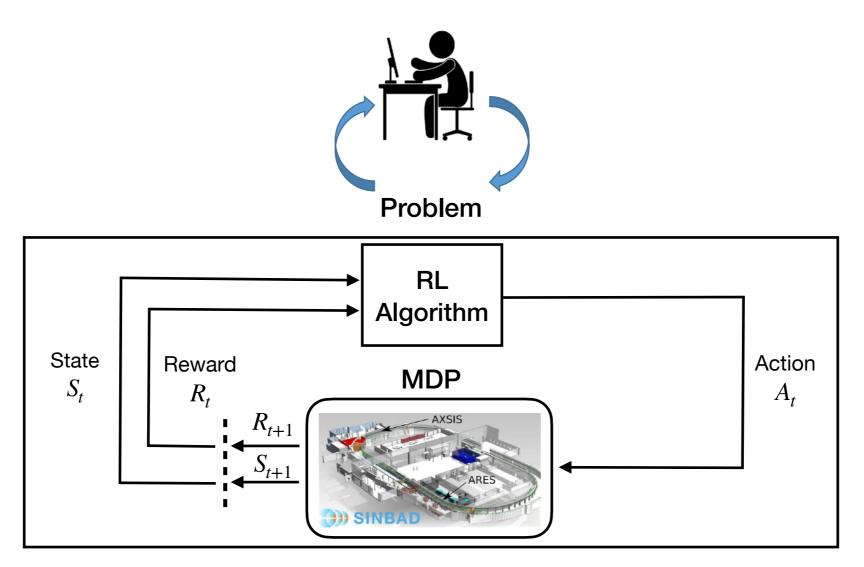
Tutorial RL4AA

Probabilistic trajectories

- Objective if episodic: $J(\theta) = V^{\pi_{\theta}}(s_0) := V(\theta)$
 - Stochastic search: pure random search, Simplex, Bayesian optimization
- Using the gradient: Trajectory probability $V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$ Trajectory reward $\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta) = \mathbb{E}[R(\tau) \nabla_{\theta} \log P(\tau; \theta)]$ Log likelihood trickStochastic gradient
 - Sampling of $A_t \sim p(\cdot | \tau_t; \theta)$
 - Handle probabilistic policies (example)
 - High dimensional and continuous action spaces
 - Reinforce algorithm considers temporal structure

The entire problem

Markov decision process - MDP



Optimisation

- Optimisation has become a standard tool in the control room:
 - ➡ Fast adaption from scratch
 - ➡ Easy to tune with short exploration
 - It is not RL optimisation is greedy
- RL has potential to solve a much broader range of problems:
 - ➡ Incorporates state information if trained, much faster than optimization
 - Can handle delayed consequences
 - Policy might be faster and easier to calculate and implement

Wishlist

- An agent which is:
 - ➡ Easy to train
 - Needs little amount of samples or adapts from uncertain simulation
 - Adapts quickly or continuously to changes
 - Does not consume to much resources
 - ➡ Generalises well
 - Respects safety

