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Tutorial RL4AA’24
Concepts to overcome challenges in applying RL to accelerators 

- from deep meta-RL to safe shallow model-based RL
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Goal of this tutorial

• Extend our toolbox - there is no one-fits all solution

• Give you concepts at the boundary of RL

• Fresh ideas to attack your RL problem you should be 

aware of
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Problem set up
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CERN AWAKE steering problem

• AWAKE electrons - start 5 MV (RF gun), accelerated to 18 MeV transported through beam line of 12 m to the AWAKE 
plasma cell. 


• Vertical 1 m step and a 60° bend bring electron beam parallel SPS proton beam shortly plasma cell. 

• The trajectory is controlled with 10 horizontal and 10 vertical steering dipoles according to the measurements of 10 

beam position monitors (BPMs). 
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• Well studied in several papers/thesis


• Linear Dynamics with 10 degrees of freedom


• Non-trivial due to action limitations


• Analytical solution for the optimal policy


• Easy to understand, focus on the RL problem not the MDP


• The simulation corresponds exactly to the real system (measured optics)


• All our algorithms were tested on the real machine

5

CERN AWAKE steering problem 
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• 10 continuous states  and actions   (10 DoF problem - observation is state)


• Rewards  negative of RMS of states 


• Actions are done in   


• Episodic training


• Initial criteria: Initial distribution  is away from low RMS - to make problem a bit challenging


• Termination criteria: 

➡ Maximal number of interactions (truncation)


➡ RMS below measurement uncertainty 


➡ States  > beam pipe 


• Transitions  are deterministic,  =1 


• If we speak about different tasks  (MPDs) we mean different optics 

S A ∈ [−1,1]

R ri ∝ − ∑ Δs2
i

st+1 = Rat + st

ρ0

si

P γ
i Ri
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Position

Target trajectory

Current trajectoryΔsi

Correctors (magnets)

CERN AWAKE steering problem MDP
Markov decision process: ( , , , , , )S A R P ρ0 γ
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Motivation
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RL in accelerator control

• Goals:

➡ Set performance

➡ Quickly recover performance

➡ Maintain performance

➡ Adapt to user changes
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RL and accelerators - still rare

• Data Availability:

➡ Slow and little data acquisition, maybe safety regulations

➡ Modelling and Simulation Limitations

➡ Long times needed to adjust after faults, resets, changes


• Integration with Existing Systems

• Long-term Stability and Maintenance

• General Safety and Reliability

• Real-Time Decision Making

• Computational Resources

• Generalisation and fast Adaptation

9

Effectively understand and optimise require significant expertise 
and computational resources.

Challenges and problems, both the RL algorithms and the 
physical system
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Action

At

Reward

Rt

State

St

Rt+1

St+1

RL 
Algorithm

 

MDP

POMDP

MDP Markov decision process

POMDP Partially observable Markov decision process

The entire problem
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Wellcome to POMDPs

11

From Mykel Kochenderfer
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World state

True dynamics

Problem design - capture the right thing

• Rarely the observation  is the state , the world state is, but often we assume it is certainty 
equivalence!


• POMDP  MDPs!

o s

⇒

12

 

MDP

• Solve an SDM problem: Information Decision Information Decision …


• Generally stochastic!


• Consequently we build a feedback system not planing too far in the future:


• Define a state , as a function holding sufficient statistics until 
time step  for a decision - (example pong)


• Decision based on  via:  - the policy - optimise an expected aggregate of future rewards

→ → → →

st = ht(ot, at−1, ot−1, at−2, ot−2 . . . )
t

st at = πt(st)

ot−1
ot−2 ot

Internal 
representation

=̂st

πt(st) = at

Features
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How bad is it?
• Linear POMDP: believe state - 


➡ Static output feedback is NP hard (linear in  and dynamics)


➡ General POMDPs are PSPACE hard


• There are ways out - separation principle:

➡ Filtering  - prediction problem


➡ Action based on certainty equivalence


➡ Optimal filtering - if dynamics are linear and noise is Gaussian - Kalman filtering - 
general belief propagation - LQG 


➡ Kalman filtered state - optimal in estimation and control


➡ Estimate state with prediction ,  are time lags

Ot = ht(St, At, Wt)
Ot

̂st = f({ot})

St = h(τt) τt

13
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POMDPs and non stationarity

• To find a proper state we have to solve the additional prediction problem 



• In the non-stationary, finite horizon formulation the MDP has the form 
  Value-functions  get time depended 

 similar form of Bellman equations


• We can incorporate time into state e.g.   standard MDP


• Generally Bellman equation nice in discounted, stationary formulation  
this is what we usually see and most libraries build on this formulation

st = ht(ot, at−1, ot−1, at−2, ot−2 . . . )

(S, A, {P}h, {r}h, H, ρ0) ⇒ Qh(s, a)
⇒

s̃ = (s, h) ⇒
⇒

14
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Challenges of RL
1. Problem formulation - capturing the right problem in an MDP


➡ State representation, Markov Property (e.g. non stationarity)


➡ Reward engineering


➡ …


2. RL - core issues:

➡ Sample efficiency 

➡ Stability 


➡ Run time 

➡ Hyper-parameter tuning 

➡ Exploration 

➡ Safety 

➡ Robustness to Changes, Generalisation 

➡ …

15
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RL core issues

16
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RL - core issues

• Sample efficiency


• Stability 


• Run time


• Hyper-parameter tuning


• Exploration


• Safety


• Robustness to Changes


• Generalisation


• …

17
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Sample efficiency
• Derivative free methods: (NES, CMA,..)


• 10 x Online methods (A3C) 


• 10 x Policy-gradient methods (TRPO)


• 10 x Replay-Buffer + Value function 
estimation (Q-Learning, DDPG, TD3, 
NAF, SAC,…)


• 10 x Model-based RL methods (MPO, 
Guided Policy Search, Dyna)


• 10 x Model-based shallow methods 
(no NNs) Few shot GPs... 

18

TRPO~50000

MPO~5000

SAC<500

MBPO<100

GP-MPC < 50

> 10e6 interactions

< 100 interactions

Colours are different tasks (optics)
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But sample efficiency is not all

19

Hyper-parameter tuning

Computation time

Bias

Samples

Stability

Off-policy

Q-learning Actor-critic On-policy 


Policy gradient
Model-based

~ 100 interactions

~ 10e4 interactions

Evolutionary/

gradient free

> 1e6 interactions

Planning Optimisation
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Scenarios RL2Real

20

Simulation-
based RL

Model-based 
RL

How to make 
RL work on 
real world 
problems?

Adapt to real 
world

Policy to 
reach target

Exception 

Sufficient Data

Direct model-free RL

Find good hyper-parameters

Exception 

High fidelity 
model
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Scenarios RL2Real

21

Simulation-
based RL

Model-based 
RL

How to make 
RL work on 
real world 
problems?

Adapt to real 
world

Policy to 
reach target

• If we have a simulation: 
prepare agent for real world 
training in the best way 


• If we don’t have a 
simulation: train the agent 
in the fastest best way, and 
other advantages


• If we trained an agent…

➡ Works on one day but not on 

others…


• Agent should be able to 
adapt quickly
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Two concepts at the boundary of RL

• Meta RL


• Adapts quickly to changes


• Brings nice properties

22

• RL towards control theory (leverage 
concepts from control theory)


• “The Bayesian optimisation of RL”

• Extremely sample efficient

Simulation-based RL

Adapt to real world RL Control 

Theory

Part I - Meta RL Part II: safe shallow 
model-based RL

Direct RL
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Part I - Meta RL

23
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Motivation
• How we can use experience from some source domain to get into a position, where we 

can solve more efficiently or effectively new downstream tasks?

• Transfer learning: Using experience from one set of tasks for faster learning and better 

performance on a new task

24

RL on 
Simulation

Policy to 
reach target

Policy to 
reach target

RL on 
Simulation 1

RL on 
Simulation 2

RL on 
Simulation 3

Adapt to real 
problem 1
Adapt to real 

problem 3

Adapt to real 
problem 2

Domain randomisation/multi task learning

Adapt to real 
problem

Transfer learning

Can we do this smarter?  Meta-learning→
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 p(𝒯)
Distribution of 

MDPs

What is meta-RL?

• Can the knowledge acquired from 
learning many different tasks be 
leveraged to expedite and improve the 
learning process for new tasks? 


• Meta-learning = learn to learn 

• Comes in many flavours - we focus on 

gradient based meta-learning

• Closely related to multi task learning- in 

multi-task is the task provided explicitly 

• Meta-learning distinguishes itself by its 

ability to infer tasks and its explicit 
focus on rapidly adapting to new task

25

Learn to learn different 
task

Fast when learning a 
new task

Meta RL

𝒯i ∼ p(𝒯)
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Model Agnostic Meta Learning (MAML)

26
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Why MAML is a good idea

• MAML is universally applicable beyond our specific 
scenario:

➡ It can be implemented across various optimization problems. 


➡ The required gradients (to second order) can be efficiently computed 
using automatic differentiation.

27
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Meta RL via gradients
MAML outline

28

Require : distribution over tasks

Require : step size hyper-parameters

1. randomly initialise 

2. while not done do 
3.     sample batch of tasks   
4.     for each  do     
5.          Sample with policy : 


6.          Evaluate  with respect to  rollouts


7.          Compute adapted parameters with gradient descent: 


8.          Sample with new policy : 


9.    Update 

p(𝒯)
α, β

θ

𝒯i ∼ p(𝒯)
𝒯i

θ 𝒟tr
𝒯i

∼ 𝒟𝒯i

∇θℒ(θ, 𝒟tr
𝒯i

) K
ϕi = θ − α∇θℒ(θ, 𝒟tr

𝒯i
)

ϕi 𝒟test
𝒯i

∼ 𝒟𝒯i

θ ← θ − β ∇θ ∑i
ℒ(ϕi, 𝒟test

𝒯i
)

𝒯1

𝒯2

𝒯3 p(𝒯)
𝒯i ∼ p(𝒯)

θ

θ*1 θ*2

θ*3∇ℒ1

∇ℒ2

∇ℒ3

meta-learning
learning/adaption

ℒ𝒯i
(θ) = − 𝔼st,at∼πθ,𝒯i

[
H

∑
t=1

Ri(st, at)]
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Our set-up

• TRPO used for meta optimization

• Policy gradient with GAE (Schulmann 2015) as RL 

algorithm - fast and stable

29
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Meta RL (in accelerator control)

30

Meta-train model-
free RL (MFRL)

Unknown

Few shot training 
MFRL

Policy (ANN)

Simulation 
Unknown

POMDP

• Possible scenarios:


• Inaccurate simulation  Prepare agent for real training in reliable and fast way


• Non-stationarity  Environment changes regularly, fast, stable retraining


• Several similar computational demanding problems  Common pre-training 


• …

→

→

→
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Experiments

31
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• Assume we don’t know the optics 
(quadrupole settings) in advance


• Different optics are generated 
(quadrupoles are varied) within a 
uniform distribution centred on the 
real settings


• To assess progress, five optics, and 
the real optics, are fixed and 
progress is monitored

32

 p(𝒯)
𝒯i ∼ p(𝒯)

Test response matrices

Our set-up
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Experiments Overview
• Stable and monotonic training from meta policy


• Quick adaption to actual setting - few shot adaption

33

Model-based Off-policy

Q-learning

Actor-critic On-policy 

Policy gradient

Evolutionary/

gradient free

~ 100 iterations > 1e6 iterations

Demonstrated on the machine with Lukas and Verena

Random start

Pre-trained with centred tasks

Meta policy
Averaged over test tasks
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Part II: safe shallow model-based RL

34
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(Fast) RL with guarantees - a dream? 

35
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What if we’d know the model: optimal control 

36
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Three main ingredients

• Mathematical description of the system to be controlled 
(state-space models) 

➡ We use MDPs 


• Specification of a performance criterion (the cost function) 

➡ The reward designed by us (or emitted by the environment in RL setting) 


• Specification of constraints 

➡ Control or state constraints 

37
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Model assumptions 

• Discrete time

• A stochastic dynamics with Markov property: 

 with 


• Later  is normally distributed 


• In stochastic settings optimise for an expected reward 

st+1 = f(st, at, ωt) ωt = ωt−1(st, at)
ωt

38
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Solution 1: Dynamic programming

• Dynamic Programming (Principle of Optimality - sufficient condition) 

➡ Compositionality of optimal paths


➡ Closed-loop solutions: find a solution for all states at all times 


• Solvable via Bellman equation in a backward recursive fashion


• Algorithms as e.g. Value iteration, Policy iteration (see Sutton and Barto) 


• No direct notion of constraints for states or actions! 

39

π(s)
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Solution 2: Non-feedback control

• Calculus of Variations - Pontryagin Maximum Principle PMP (necessary condition) 


• PMP turns functional minimisation in a function minimisation at each point in time 


• Find a solution-sequence  for a given initial state  


• Can handle constraints e.g. ,  


• But: open loop cannot stabilise the system! 

(a*, s*) s0

st ∈ S at ∈ A

40

(a*, s*)

A

s0

B
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Best of both worlds - model predictive control (MPC)

41

Optimal control

Open loop

Direct Indirect

Closed loop

Principle of 
optimality

Discrete-time: DP Continuous-time : DP

MPC

Adapted from AA 203: Optimal and Learning-Based Control

https://stanfordasl.github.io//aa203/sp2223/
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MPC Idea

42

k k + 1 k + 2 k + h

Past Future

Prediction Horizon
Reference trajectory

Measured output Past control

Predicted controlImplement

Want to solve infinite optimization problem:


maximiseπt lim
T→∞

𝔼Wt
[

1
T

T

∑
t=0

Rt(St, At, Wt)]

subject to: St+1 = ft(St, At, Wt)
At = π(St)
S0 = s

MPC computes an open loop control on finite horizon:


maximise{at}𝔼Wt
[

H−1

∑
t=0

Rt(St, At, Wt) + V(SH)]

subject to: St+1 = ft(St, At, Wt)
S0 = s

Optimise for finite horizon

V

Final cost 
performance for 

robustness

Predicted output
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Back to RL - no model

43

Action

AtReward


Rt

State

St

Rt+1

St+1

Control 
Algorithm

 

Expansive interaction with 
real system

Action

At

Reward

Rt

State

St

Rt+1

St+1

Cheap planning on 
learned model
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GP-MPC the BO of RL

• Setup the dynamics-reward model


• Use PMP to obtain sparse optimization with gradient information 


• Choose optimization algorithm


• Consider safety (constraints)


• Set up training 

44

Ground Truth
Bootstrap 1
Bootstrap 2
Training Data

Dynamics Model Planning via Model Predictive ControlTrajectory Propagation

Optimization

Train model

Model

Apply action(s) to 
system

Model (GP)
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We don’t know the model 

45

• Learn the model from data:

➡ Aleatoric uncertainties 


➡ Epistemic uncertainties - minimise model bias 


• Gaussian processes (GPs) are used assuming  and 


• Include if needed the emitted reward 


• Use RBF Kernel - allow for analytical propagation of uncertainties 


• Standard GPs training: evidence maximization 

st+1 = f(st, at, ωt) ωt ∼ 𝒩(0,σ)
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Uncertainty propagation

• Moment matching for deterministic propagation of the mean  and the 
covariance  of the distribution of dynamics-reward model 


• The immediate performance measure is:  


• If reward not emitted  - formulated as polynomial function 

μ(st)
Σ(st)

𝔼[r(st, at)] = ∫ r(st, at)𝒩(st |μt, Σt)dst

46
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Fast optimisation

• From PMP a sequence of a constraint optimisation for each time step 


• Dynamics-Lagrangian-multipliers in closed-form, Hamiltonian gradient 
same as Reward gradient 


• Optimisation (analytical) up to (second) order in dynamics-reward model 


• State and action constraints (analytical) up to second order 


• “An interior point algorithm for large-scale nonlinear programming” - 
“trust-constr” used for experiments (we use BFGS)

47



Simon HirländerTutorial RL4AA

Experiments

48
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Tests on the machine - few shot RL

• November 2022 experiment 
campaign


• Adjusted on simulations


• Learns from scratch in a few steps


• Rapidly stabilises system

49

Average over all experiments

Screenshot during experiments

N
um

ber of 
iterations per 

episode

Fi
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l R
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d 
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Trajectory
Previous trajectory
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Incorporate considerations for safety

• Try to avoid hitting the wall


• Chance constrains: 
 safe policy is 

activated (red shaded)


• Two layer safety: longterm safety (for 
optimal control) and instant safety (for safe 
exploration)


• Initial settings close to wall to test safeness

ℙ( |s | > threshold) ≥ ε→

50

No safety - hits the wall Safety - avoids the wall

Safe exploration
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Non stationarity and safety
• Optics was distorted with a detuning of the quads by up to 20% with low timescale


• State was extended to incorporate the time step 


• More weight on recent timepoints


• Safety also considered

s → (s, t)

51

No safety - no time information

 no success in control

Safety + time information 

little violations and stable performance
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Wrap up

52
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Key points - meta RL
• MAML leads to rapid and stable adaption, generalisation is good


• General simple and elegant concept (also applicable e.g. to BO)


• Stable and computationally fast and simple algorithms used (hardware)


• In the best case monotonic improvements during training (non destructive)


• Simulation needed covering the true problem as convex hull


• Meta training might be computational intense


• Implementation might be tricky


• Tuning is hard

53

Meta-train model-
free RL (MFRL)

Unknown

Few shot training 
MFRL

Policy (ANN)

Simulation 
Unknown

POMDP
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Key points - GP-MPC
• Extremely sample efficient


• Can handle constrains


• GP is non-parametric  computational intense, scales badly


• Only model is stored, optimization based control


• Long horizons might be computational intense


• Implementation might be tricky


• Tuning is hard

→

54

Ground Truth
Bootstrap 1
Bootstrap 2
Training Data

Dynamics Model Planning via Model Predictive ControlTrajectory Propagation

Optimization

Train a model

Model

Apply action(s) to 
system

Model (GP)
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Summary

• Machine learning is always a trade-off between 
several criteria (no free lunch) - the more tools the 
better


• The unique characteristics of the accelerator domain 
and real-world limitations narrow down the range of 
methods available, making the implementation of 
reinforcement learning a complex task


• Two RL methods are showcased to guide new 
research and ultimately achieve operational RL

55
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Thanks for your attention

56

Now let’s have fun
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➡ K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022. https://probml.github.io/pml-book/book1.html


➡ K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. http://probml.github.io/book2


➡ D. Liberzon, Calculus of variations and optimal control theory. Princeton, NJ: Princeton University Pres, 2012, http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html


➡ F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems. Cambridge: Cambridge University Press, 2017


• Other resources:

➡ S. Hirlaender, Advanced concepts in RL, 2023 (RL4AA23 Lecture) https://github.com/RL4AA/RL4AA23/blob/main/slides/Hirlaender_advanced_concepts.pdf


➡ S. Boyd, Convex Optimization: https://web.stanford.edu/class/ee364b/lectures.html
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Problem formulation - capturing the problem in an MDP
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Wellcome to POMDPs
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World state

True dynamics

Problem design - capture the right thing

• Rarely the observation  is the state , the world state is, but often we assume it is certainty 
equivalence!


• POMDP  MDPs!

o s

⇒
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MDP

• Solve an SDM problem: Information Decision Information Decision …


• Generally stochastic!


• Consequently we build a feedback system not planing too far in the future:


• Define a state , as a function holding sufficient statistics until 
time step  for a decision - (example pong)


• Decision based on  via:  - the policy - optimise an expected aggregate of future rewards

→ → → →

st = ht(ot, at−1, ot−1, at−2, ot−2 . . . )
t

st at = πt(st)

ot−1
ot−2 ot

Internal 
representation

=̂st

πt(st) = at

Features
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How bad is it?
• Linear POMDP: believe state - 


➡ Static output feedback is NP hard (linear in  and dynamics)


➡ General POMDPs are PSPACE hard


• There are ways out - separation principle:

➡ Filtering  - prediction problem


➡ Action based on certainty equivalence


➡ Optimal filtering - if dynamics are linear and noise is Gaussian - Kalman filtering - 
general belief propagation - LQG 


➡ Kalman filtered state - optimal in estimation and control


➡ Estimate state with prediction ,  are time lags

Ot = ht(St, At, Wt)
Ot

̂st = f({ot})

St = h(τt) τt
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POMDPs and non stationarity

• To find a proper state we have to solve the additional prediction problem 



• In the non-stationary, finite horizon formulation the MDP has the form 
  Value-functions  get time depended 

 similar form of Bellman equations


• We can incorporate time into state e.g.   standard MDP


• Generally Bellman equation nice in discounted, stationary formulation  
this is what we usually see and most libraries build on this formulation

st = ht(ot, at−1, ot−1, at−2, ot−2 . . . )

(S, A, {P}h, {r}h, H, ρ0) ⇒ Qh(s, a)
⇒

s̃ = (s, h) ⇒
⇒
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Multi task vs meta RL
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Direct policy search

• RL as derivative free optimization:

➡ maximise    maximise  


➡ Parametrise a distribution   maximise  


➡ Likelihood trick - estimate the derivative:


•



• Unbiased gradient estimate of , if sample efficiently from  and 


• High variance

z∈ℝd R(z) ⇒ p(z) 𝔼p[R(z)]

p(z; θ) ⇒ p(θ) 𝔼p(z;θ)[R(z)]

∇θ J(θ) = ∫ R(z)∇θ p(z; θ)dz = ∫ R(z)
∇θ p(z; θ)

p(z; θ)
p(z θ)dz

= ∫ R(z)∇θ log p(z; θ)p(z θ)dz = 𝔼p(z;θ)[R(z)∇θ log p(z; θ)]

J p(z; θ) log p(z; θ)
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Probabilistic trajectories
• Objective if episodic: 


➡ Stochastic search: pure random search, Simplex, Bayesian optimization


• Using the gradient:


➡



➡
 


➡ Sampling of 


• Handle probabilistic policies (example)


• High dimensional and continuous action spaces


• Reinforce algorithm considers temporal structure


➡ Finite difference approximation  Reinforce algorithm

J(θ) = Vπθ(s0) := V(θ)

V(θ) = ∑
τ

P(τ; θ)R(τ)

∇θV(θ) = ∑
τ

P(τ; θ)R(τ)∇θ log P(τ; θ) = 𝔼[R(τ)∇θ log P(τ; θ)]

At ∼ p( ⋅ |τt; θ)

=̂
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Trajectory probability

Trajectory reward

Log likelihood trick

Vπ(s0) = 𝔼π[∑
t

γtRt+1 |St = s0]

Stochastic gradient
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The entire problem
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Action

At

Reward

Rt

State

St

Rt+1

St+1

RL 
Algorithm

MDP

Problem

Markov decision process - MDP



Simon HirländerTutorial RL4AA

Optimisation

• Optimisation has become a standard tool in the control room:

➡ Fast adaption from scratch


➡ Easy to tune with short exploration


➡ It is not RL - optimisation is greedy


• RL has potential to solve a much broader range of problems:

➡ Incorporates state information - if trained, much faster than optimization


➡ Can handle delayed consequences


➡ Policy might be faster and easier to calculate and implement
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Wishlist

• An agent which is:

➡ Easy to train 


➡ Needs little amount of samples or adapts from uncertain simulation


➡ Adapts quickly or continuously to changes


➡ Does not consume to much resources


➡ Generalises well


➡ Respects safety 
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