
AI4EOSC Platform: User's Workshop 2023 - Bratislava, November 2023

Judith Sáinz-Pardo Díaz (sainzpardo@ifca.unican.es)
IFCA - CSIC

Federated Learning in AI4EOSC

mailto:sainzpardo@ifca.unican.es
https://ifca.unican.es/en-us
https://www.csic.es/en

Introduction to Federated Learning
EXAMPLE: Predictive keyboards.

GOAL: use data from different devices to train models that
predict the next word.

● Approach 1: collect data from all possible devices and
train a Machine/Deep Learning model in the cloud.
Predictions are returned to each device. In this case
the data has to leave the terminal.

● Approach 2: each device trains in local a model with its

own data and makes predictions. The data does not
leave the terminal. Less data for training the models.

EDGE COMPUTING

CENTRALIZED APPROACH

Introduction to Federated Learning
IDEA: Data decentralization.

● Data does not leave the device/center that generates it.
● SERVER-CLIENT structure. The server or one client creates the model that will train

each client locally with its own data.
● The clients only send to the server the parameters obtained after training the model.
● The server aggregates the weights obtained for the model by each client and updates

the initial model.
● It can be seen as a special type of DML.
● Potential clients must be identified, and it must be ensured that they have sufficient and

quality data.

Federated Learning: collaborative and decentralized approach to Machine Learning.

Federated Learning (schema)
(1) SERVER: creates the model to be trained
locally by each client.
(2) SERVER: transmits the model to the clients.
(3) CLIENT: each of them trains the model with its
local data.
(4) CLIENT: each of them sends the local
parameters to the server.
(5) SERVER: aggregates the weights of each client
using an aggregation operator and updates the
model.
Repeats the process from step 2.

Federated Learning vs Centralized approach
● Security and privacy are ensured: data are not shared.
● Reduced communication costs.
● Weights are transferred instead of data.
● Compressing the matrix of numbers that define a model saves bandwidth.
● Greater energy savings.
● Lower computational cost.
● Lower latency.

NOTE: clients can be intermittent (some disappear and new ones enter the training).

Types of Federated Learning

Cross-device FL:
In this Federated Learning approach, the clients are a large number of devices that store
sensitive information from different people or entities. Example: predictive keyboards.

Cross-silo FL:
In this Federated Learning approach, the clients are not devices, but, for example,
hospitals, banks, universities, governmental institutions, etc. Likewise, these institutions
do not want/cannot share their data with each other or with a central server, so FL is
applied. Example: medical imaging.

Types of Federated Learning

Horizontal FL:
It is the most intuitive and common case. It consists of considering the data of all clients with
the same features, for example, in the case of structured data, the data of all the clients will all
have the same columns.

Vertical FL:
In this case the different clients have data with different characteristics, but with the same
identifier. For example, is the case of several institutions which have data from the same users,
but each of them has information about different characteristics. Note that the number of
clients will be lower than in the previous case.

Types of Federated Learning

Source: Chen, Shaoqi, et al. "FL-QSAR:
a federated learning-based QSAR
prototype for collaborative drug
discovery." Bioinformatics 36.22-23
(2020): 5492-5498.

Source: https://hazelcast.com/glossary/sharding/

https://hazelcast.com/glossary/sharding/

DEMO: Federated Learning in AI4EOSC
GOAL: classify chest X-Ray images according to whether or not the patient has pneumonia.

We divide the initial train data into 3 clients.
Stratified train-test random split:
75% train, 25% test

Model: multi-layer convolutional network
implemented using keras.

Train Test

Client 1 1050 350

Client 2 1800 600

Client 3 1062 350

DEMO: Federated Learning in AI4EOSC
Login in the dashboard (https://dashboard.cloud.ai4eosc.eu/) using EGI check-in.

Create the Federated server:

https://dashboard.cloud.ai4eosc.eu/

DEMO: Federated Learning in AI4EOSC

Choose
your IDE

1
General

configuration

DEMO: Federated Learning in AI4EOSC
2

Hardware
configuration

DEMO: Federated Learning in AI4EOSC
3

Federated
configuration

Custom

Set by the
user

DEMO: Federated Learning in AI4EOSC

We are ready for starting the FL server!

DEMO: Federated Learning in AI4EOSC
Create the 3 clients in 3 different machines:

DEMO: Federated Learning in AI4EOSC
Create the 3 clients in 3 different machines:

Client 1

FL server
UUID

DEMO: Federated Learning in AI4EOSC
Create the 3 clients in 3 different machines:

Client 2

FL server
UUID

DEMO: Federated Learning in AI4EOSC
Create the 3 clients in 3 different machines:

Client 3

FL server
UUID

DEMO: Federated Learning in AI4EOSC
Model to be trained (same for the three clients)

DEMO: Federated Learning in AI4EOSC
After performing the federated training, each client use it to predict in the test split.
We show some error metrics.

Example with the first client:

DEMO: Federated Learning in AI4EOSC
PERFORM THE FEDERATED TRAINING:
1. Start the federated server:

DEMO: Federated Learning in AI4EOSC
PERFORM THE FEDERATED TRAINING:
1. Start the federated server.
2. Start the clients:
 Example with client 1:

Client side

Server
side

DEMO: Federated Learning in AI4EOSC
PERFORM THE FEDERATED TRAINING:
1. Start the federated server.
2. Start the clients:

● Start client 1
● Start client 2

Server side (round 4)

DEMO: Federated Learning in AI4EOSC
PERFORM THE FEDERATED TRAINING:
1. Start the federated server.
2. Start the clients:

● Start client 1
● Start client 2
○ Start client 3 later (e.g. after 4 rounds)

Server side

DEMO: Federated Learning in AI4EOSC
Results for each client after completing the federated training:

CLIENT 1: Test loss: 0.17493936419487 / Test accuracy: 0.9657142758369446 / Test AUC: 0.99436
CLIENT 2: Test loss: 0.06348654627799988 / Test accuracy: 0.9800000190734863 / Test AUC: 0.99896
CLIENT 3: Test loss: 0.5466659665107727 / Test accuracy: 0.9067796468734741 / Test AUC: 0.9860646034162015

Example ROC for client 1:

Conclusions
● An example of federated learning has been carried out using the AI4EOSC platform.
● Jupyter notebook has been used as IDE, but fedserver or visual studio code could be

used.
● Three clients have been considered (from a medical imaging use case), the third of

them intermittent, since it enters the training later than the other two.
● These three clients were distributed on three different cloud machines.
● Robust results in terms of accuracy and AUC were obtained for the test sets of the

three clients.
● Work under development:

○ Use the federated secret (token) for authentication. Already deployed using call
credentials in gRPC (https://github.com/AI4EOSC/flower/tree/develop). Discussion
already opened in flower (https://github.com/orgs/adap/discussions/1487)

○ Uses cases including differential privacy medical imaging use case.
○ AI4EOSC use cases: working with data from UC1.

https://github.com/AI4EOSC/flower/tree/develop
https://github.com/orgs/adap/discussions/1487

NOTE: If gRPC server is running behind a load balancer (as in our case, Traefik), clients may
not be able to connect. Flower is using the peer() method from grpc.ServicerContext in
order to identify unique flower clients. However, in some situations (like when running the
gRPC server behind a load balancer or proxy) different clients can have the same peer
identifier (i.e. the same IP:PORT), as HTTP/2 connections are multiplexed.
We have opened an issue and implemented our own version of the library changing this
issue:https://github.com/AI4EOSC/flower/commit/b215d9f3cce1ad8806e296db4fe105a8
b7f5c6c9

https://doc.traefik.io/traefik/
https://github.com/AI4EOSC/flower/commit/b215d9f3cce1ad8806e296db4fe105a8b7f5c6c9
https://github.com/AI4EOSC/flower/commit/b215d9f3cce1ad8806e296db4fe105a8b7f5c6c9

AI4EOSC ai4eosc.eu

AI4EOSC Platform: User's Workshop 2023 - Bratislava, November 15-16

Judith Sáinz-Pardo Díaz - sainzpardo@ifca.unican.es

Thank you for your attention!

ai4eosc-po@listas.csic.es

mailto:sainzpardo@ifca.unican.es

