
AI4EOSC Platform: Users workshop

B. Esteban

Log, debug and test!

1



AI4EOSC
Artificial Intelligence for the #EOSC

● Evolution of  the DEEP Hybrid DataCloud platform
● HORIZON-INFRA-2021-EOSC-01-04 call
● Runs September 1st 2022 – August 2025 (36 months)
● 7 academic partners

+ 2 SME
+ 1 non-profit organization

Advanced features for distributed, federated, composite 
learning, metadata provenance, MLOps, event-driven data 
processing, and provision of AI/ML/DL services

2



Objectives
Objective 1
Why to log?

Objective 2
Why to test?

Objective 3
Debug errors and bugs without 
dying in the attempt.

Goal
Make robust code with low errors.
Easily find and solve bugs.
Edit code without breaking requirements.

Reproduce program states and evaluate correct program 
behaviour.
Helps to improve your program/service.

Get useful information about program state and errors in 
development and production runtimes.
Helps to improve your program/service.

3



Logging Cookbook in AI4EOSC

Recommended links:
• Logging HOWTO: https://docs.python.org/3/howto/logging.html
• Logging Cookbook for Python3: https://docs.python.org/3/howto/logging-cookbook.html 

● Print to stdio (print command) output for users, not program status.
● Do not return program status via API, sensible information might leak.

(Passwords, emails, IPs, user ids, etc.)
● Log program status through the terminal is generally safe.
● If you catch exceptions with try, log the error before continue the program.

4

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging-cookbook.html


Logging Flow
Two main components of 
logging (remember):
● Loggers:

● Handlers:
(Not so important)

Why? There is normally a 
default handler for console or 
your web library.

logger = logging.getLogger(__name__)

handler = logging.StreamHandler()
Both have setLevel !!

5



How to start logging?

Small time for demo: advanced api

● Generic scripts → use “logging.basicConfig”:
logging.basicConfig(format=format, level=verbosity)

● Web frameworks → config file, e.i.;
https://flask.palletsprojects.com/en/2.3.x/logging/#basic-configuration

● DEEPaaS → config file (also) → [debug = true]
https://docs.deep-hybrid-datacloud.eu/projects/deepaas/en/stable/install
/configuration/sample.html

6

https://flask.palletsprojects.com/en/2.3.x/logging/#basic-configuration
https://docs.deep-hybrid-datacloud.eu/projects/deepaas/en/stable/install/configuration/sample.html
https://docs.deep-hybrid-datacloud.eu/projects/deepaas/en/stable/install/configuration/sample.html


Logging Exercise:
● Clone repository from: https://github.com/BorjaEst/ai4eosc-exercises
● *Create/activate virtual environment with your

favorite tool.
● Install model; use “pip install -e .”
● Open the model script to generate data at: 

“ai4eosc_exercises/data/create_dataset.py”.
● Edit the script to print log information in a file

if “--debug” argument is true.
● Execute the script.

python -m ai4eosc_exercises.data.create_dataset --debug my_data.txt
● Find the errors.

7

https://github.com/BorjaEst/ai4eosc-exercises


   A bit of knowledge about TDD

Graphical definition of 
“undocumented features”.

user
your program

● Software programming practice – Methodology where requirements are 
converted to test cases before software is fully developed.

● Origin – Developed by Kent Beck in the late 1990's as part of Extreme 
Programming.

● Relies on testing – A procedure intended to establish the quality, 
performance, or reliability of something, especially before it is taken into 
widespread use

A Software DEFECT / BUG / FAULT is a 
condition in a software product which does 
not meet a software requirement or 
end-user expectation.

softwaretestingfundamentals.com/defect

8

https://softwaretestingfundamentals.com/defect


Testing Cookbook in AI4EOSC

Recommended links:
• pytest: helps you write better programs: https://docs.pytest.org
• Python Unit testing framework: https://docs.python.org/3/library/unittest.html

● Pytest (library), Unittest (library) and unit testing (method).
Are not the same! You should choose between unittest or pytest.

● Write generally tests as software requirements.
● Parametrization is generally better than 100% coverage.
● Using tox, helps you to ensure that it will run (almost) everywhere.
● CICD to ensure code contributions are always tested.

9

https://docs.pytest.org
https://docs.python.org/3/library/unittest.html


Testing levels where you should test

Does your software do what you want?
(Unfortunately I am responsible of this)

Does your software work in DEEPaaS?
Hope so 🤔 (Kind of responsible)

Is DEEPaaS working?
Sure! (Also not responsible)

Is AI4EOSC a nice framework?
Yes! (But I am not responsible of this)

10



Testing Flow and Scopes
Two main components of 
pytest testing (remember):

● Fixtures:

● Tests:

@pytest.fixture(scope=<scope>)

def test_<something>(<fixtures>):

https://docs.pytest.org/en/7.4.x/reference/fixtures.html#reference-fixtures

Complicated? Do not worry, let’s start by 
simply: Fixture == Setup so:

Fixture1 -> Fixture2 -> [test1, test2, test3]

11

https://docs.pytest.org/en/7.4.x/reference/fixtures.html#reference-fixtures


How to start testing?

Small time for demo: advanced api

● Simple testing → use “python -m pytest tests”:
Run in local, does not handle installation of requirements.

● tox - automation project → use “tox -e <environment>”:
Tests installation and execution of tests in different environments.

● CICD (Jenkins/github actions/etc.) → Just commit and push:
Tests run in a remote machine automatically.

12



Testing Exercise:
● Clone repository from: https://github.com/BorjaEst/ai4eosc-exercises
● Install test requirements; 

“pip install -r requirements-test.txt .”
● Test your metadata completing tests at: 

“ai4eosc_exercises/tests/test_metadata/”.
● Create tests for predictions at: 

“ai4eosc_exercises/tests/test_predict/”.
● Prediction tests are currently using “test_dataset_1.txt” as unique input 

file, edit the fixtures for predictions to test also “test_dataset_2.txt”
● Can you repeat the steps for “tests/test_training/”?.

13

https://github.com/BorjaEst/ai4eosc-exercises


Debug is easy with the correct tools

Recommended links:
• Debugging with vscode: https://code.visualstudio.com/docs/editor/debugging
• The Python Debugger: https://docs.python.org/3/library/pdb.html

● Log program status with python and DEEPaaS logging.
● Tests that point to the requirements that are failing.
● Debugger tools like breakpoints, to stop program execution.
● Python profilers to test your code efficiency.
-> Use IDE or Python pdb with:

14

> python -m pdb myscript.py

https://code.visualstudio.com/docs/editor/debugging
https://docs.python.org/3/library/pdb.html


Write your tests as requirements
from pizza_factory import ingredients
from pytest import fixture

class TestPepperoni: # -----------------------------> Test case expressed as ‘class’
    @fixture(scope="class")
    def pepperoni(self): # ----------------------------> Fixture for case set up
        return ingredients.Pepperoni()

    def test_is_red(self, pepperoni): # -----------> Test case function/check
        assert pepperoni.color == "red"

    def test_is_round(self, pepperoni): # -------> Test case function/check
        assert pepperoni.shape == "round"

      pizza_requirements/test_toppins.py

Will help you know what you cannot provide to your users.
If you do changes, you know can control the side effects.

15



What is a debugging breakpoint?
Execution stops where you need:
● Defined red dots in the code.
● Defined commands in the code.
● When an exception is raised.
● When an exception is uncaught. 
● etc.
Then you can print variables in the 
console and even execute 
commands.

16



You can easily integrate debugger tools
with testing in most IDEs.

Small time for demo: 
advanced api

Time to see it in action?

17



● Clone repository from: https://github.com/BorjaEst/ai4eosc-exercises
● Can you rewrite your tests and fixtures to make

them look like model requirements?
● Pause execution when testing test_emails. 

If you are not using an IDE, use: `pdb.set_trace()`
Can you tell the value for metadata[“license”] ?

● Run DEEPaaS with a debugger. Open the browser
at the local URL and call for “GET /models/ai4eosc_exercises”
Can you pause the execution when calling the method?

● Can you use “logger.debug” to print information when calling again
“GET /models/ai4eosc_exercises”. What is missing?
Hint: Look at “.vscode/launch.json” -> “Line 12””.

Debugging Exercise:

18

https://github.com/BorjaEst/ai4eosc-exercises


Time for questions

19



Thank you for your time!

20



FAQ
● Flask returns debug info in web page!

Yes, but for frontend debug purposes, DEEPaaS API is not a frontend framework (Yet).

21


