
Adding new module on the AI4EOSC /iMagine
marketplace

AI4EOSC User Workshop – 15/11/2023 (Bratislava)

Valentin Kozlov
KIT

General steps

2

Check AI4OSdocs/develop-model#integrating-module-in-the-marketplace
Look into tips on AI4OSdocs/develop-model

1. check namings (Jenkinsfile(s), metadata.json, README.md(s))
2. install deep-app-schema-validator and validate metadata.json

 (check: the JSON schema is OK)
3. build your docker image locally (check: it is built fine)
4. start that docker image and enter inside
5. install tox tool & run software tests (check: tests pass)
6. start deepaas-run (check: model loaded)
7. access the API and perform basic manual tests (check: app behaves as expected)
8. goto AI4OS catalog (deephdc/deep-oc) and edit MODULES.yml to add your module (PR)

=> platform operators proceed with checking and adding your module

(ℹ) You may do only item “8.”
But performing 1.-7. may help
you to find problems faster

https://docs.ai4eosc.eu/en/latest/user/howto/develop-model.html#integrating-the-module-in-the-marketplace
https://docs.ai4eosc.eu/en/latest/user/howto/develop-model.html

1. Check namings
● (currently) two repositories:

○ <project_name> : repo with your AI model and API
○ UC-<original_github_repo>-deep-oc-<project_name> : docker and metadata

● both repositories have Jenkinsfile for the Jenkins CI/CD
● both repositories have README.md where <CI/CD build status> is referenced

● UC-<original_github_repo>-deep-oc-<project_name>/Dockerfile :
○ needs <docker base name>; git pulls <project_name>

BUT!
● UC-<original_github_repo>-deep-oc-<project_name>/Jenkinsfile

○ can redefine the <docker base name>
○ defines <docker image name for the app >

● UC-<original_github_repo>-deep-oc-<project_name>/metadata.json lists
<project_name>, <docker image name for the app>, <dataset>, <CI/CD build status>
as shown on the Hub/Marketplace 3

(ℹ) because we may want to
automatically build different
docker images/tags

(ℹ) Normally should be well set by the
(cookiecutter) template

1. Check namings, CI/CD example

4

changes in
<project_name>

Update <CI/CD build status> in
README.md of <project_name>

Marketplace update

(success)

Update <CI/CD build status> in
README.md of <project_name>

changes in
DEEP-OC-<project_name>

CI/CD job for
DEEP-OC-<project_name>
(docker image build)

CI/CD job for
<project_name>
(style, tests, sec)

○ fasterrcnn_pytorch_api : repo with your AI model and API
○ deep-oc-fasterrcnn_pytorch_api : docker and metadata

(metadata.json)

https://github.com/deephdc/fasterrcnn_pytorch_api
https://github.com/deephdc/DEEP-OC-fasterrcnn_pytorch_api

2. deep-app-schema-validator

● Install deep-app-schema-validator:
 pip install git+https://github.com/deephdc/schema4apps

● run it in UC-<original_github_repo>-deep-oc-<project_name> :
 deep-app-schema-validator metadata.json

5

https://github.com/deephdc/schema4apps

3. build your docker image locally

● Simple way: goto UC-<original_github_repo>-deep-oc-<project_name>
 docker build -t myhub/UC-<original_github_repo>-deep-oc-<project_name> .

● Options:
○ redefine tag for <docker base image>

 docker build -t myhub/UC-<original_github_repo>-deep-oc-<project_name>:<specific tag> \
--build-args tag=2.14.0-gpu .

○ redefine branch for <project_name>:
 docker build -t myhub/UC-<original_github_repo>-deep-oc-<project_name> \
--build-args branch=dev .

○ you can combine the above options together

6

(ℹ) don’t forget “.” (dot)
in the end!

4. start docker image locally
● Simplest:

 docker run -ti myhub/UC-<original_github_repo>-deep-oc-<project_name> /bin/bash

● Options:
○ Add specific port(s):

 docker run -ti -p 5000:5000 -p 8888:8888 \
 myhub/UC-<original_github_repo>-deep-oc-<project_name> /bin/bash

○ Use docker’s host network driver (all host ports are redirected to the container):
 docker run -ti --network host \
 myhub/UC-<original_github_repo>-deep-oc-<project_name> /bin/bash

○ Mount host directory inside the container, e.g. with your “host-version” of the code
 docker run -ti -v $PWD/<project_name>:/srv/<project_name> \
 myhub/UC-<original_github_repo>-deep-oc-<project_name> /bin/bash

○ you can combine the above options together
7

(ℹ) can be
most practical

(ℹ) in this case, you can
modify the code on the
host and run it inside
the container

https://docs.docker.com/network/drivers/host/

5-6. inside container

5. Run tox:
● Update Ubuntu: apt-get update && apt-get upgrade -y
● (may need to) Upgrade pip: pip3 install --upgrade pip
● Install tox : pip3 install tox
● Goto directory /srv/<project_name> and run tox: tox
● Options: you can also run a single test, like tox -e qc.sty

8

6. Run deepaas-run (if 1-5 is successful):
● Full command: deepaas-run --listen-ip 0.0.0.0 --listen-port 5000
● Or most of modern containers : deep-start
● Check that the model is loaded and no Errors (Warnings may happen):

 INFO deepaas.api [-] Serving loaded V2 models: ['fasterrcnn_pytorch_api']

7. access swagger locally

9

8. Finally, PR in AI4OS hub

10

Finally, when all is successful, go to AI4OS hub
(moving to github.com/ai4os-hub from deephdc/deep-oc)
and make PR (pull request) in order to add your module in MODULES.yml as :

- module: https://github.com/deephdc/UC-<github-user>-DEEP-OC-<project-name>

(see also this doc)

(ℹ) with that move,
some modifications
will happen but general
steps 1-8 will stay

https://github.com/ai4os-hub
https://github.com/deephdc
https://docs.ai4eosc.eu/en/latest/user/howto/develop-model.html#integrating-the-module-in-the-marketplace

AI4EOSC ai4eosc.euai4eosc-po@listas.csic.es

Thank you! Any questions?

Bratislava Workshop – 15/11/2023

Author

11

