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Blazars
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Motivation

Blazars exhibit rapid varying
emissions.

Extensive effort in multiwavelength
observations.

Most research focuses on individual
flares.

Continuous observations in i.e. X-ray
and γ-ray wavebands presents the
opportunity to study the long-term
variability.

Figure: Fermi-LAT
Collaboration & 3C 279
multi-band campaign (2010).
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Aim

Modelling long-term variability
to better understand causes of
such phenomenon

Use long-term variability as a
tool to improve on models.

Construct parameter varaitions
representative of accretion
flows.

Identify specific behavior from
resulting multiwavelength
curves, PSDs and
cross-correlations.

Figure: Zacharias et al. (2017)
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Model and Setup

Time-dependent one-zone leptonic model (Diltz and Böttcher, 2014)
used. Baseline parameters used are similar to the work of Zacharias
et al. (2017).

Low-frequency peak in
emission caused by
synchrotron.

High-frequency peak due to
inverse Compton scattering.
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Generating Variations

PSDs are generated with the
algorithm of Timmer and König
(1995) from which a signal can be
obtained.

The signal is then used as input for
the model for a specific parameter.

P(f ) = N (0, S(f )) + iN (0, S(f ))

x(t) = FFT{P(f )}
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Results: Light curves
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Results: PSD averages
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Results: Cross-correlations
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Current & future work

Find explanations for some results.

Explore more input PSD spectra and parameters.

Explore SSC dominated representative test case.

Use the same methodology for hadronic model.

Characterizing variability patterns in real observations of blazars.
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Questions

Thank you

Questions are welcome and appreciated

This work is funded by the NRF. Any opinion, finding and conclusion or recommendation expressed
in this materisal is that of the author, and the NRF does not accept any liability in this regard.
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