Interpretation of the coincident observation of a high energy neutrino and a bright flare

Shan Gao for "Monitoring the nonthermal universe" 2018, Cochem

Animation by DESY

Based on paper submitted to *Nature Astronomy* by SG, A.Fedynitch, W. Winter and M. Pohl, preliminary arXiv version 1807.04275

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

The first smoking-gun signature of a VHE neutrino source?

IceCube 170922A and blazar TXS0506+056

Figures reconstructed from Fermi-LAT, ApJS, 2017; IceCube, Science, 2013, GCN alert 21916 by IceCube

Multi-messenger observation paper:

IceCube et al, Science 361 (2018)

List of follow up papers:

https://icecube.wisc.edu/pubs/neutrino_blazar

Theoretical modeling : this talk, 1807.04275

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Illustration of an IceCube neutrino track event. IceCube Collaboration

Theoretical challenges

IceCube, Fermi, MAGIC,++, Science 2018

Neutrino detected during flare, not quiet state

Delayed or flikering emission of TeV photons

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

 10^{-10}

Geometry

Time-dependent hadro-leptonic code (AM³)*

*Astrophysical Modeling with Multiple Messengers

$\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$

	injection	escape	synchrotron	inverse Compton	$\gamma\gamma\leftrightarrow e^{\pm}$	Bethe-Heitler	$p\gamma$
e-	$\rm Q_{e,inj}$	$\alpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{e,IC}, D_{e,IC}, \alpha_{e,IC}, Q_{e,IC}$	$\alpha_{\rm e,pa}, {\rm Q}_{\rm e,pp}$	Q_{BH}	$Q_{e,p\gamma}$
e^+	_	$\alpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{\rm e,IC}, \ {\rm D}_{\rm e,IC}, \ \alpha_{\rm e,IC}, \ {\rm Q}_{\rm e,IC}$	$\alpha_{\rm e,pa}, \ {\rm Q}_{\rm e,pp}$	$Q_{\rm BH}$	$Q_{e,p\gamma}$
γ	_	$\alpha_{\rm f,esc}$	$\alpha_{\rm f,ssa}, {\rm Q}_{\rm f,syn}$	$\alpha_{\rm f,IC}, \ {\rm D}_{\rm f,IC}$	$\alpha_{\rm f,pp}, \ {\rm Q}_{\rm f,pa}$	$lpha_{ m f,BH}$	$\alpha_{\rm f,p\gamma}, \ {\rm Q}_{\rm f,p\gamma}$
р	$\mathrm{Q}_{\mathrm{p,inj}}$	$lpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{p,syn}}, \mathrm{D}_{\mathrm{p,syn}}$	$\dot{\gamma}_{\rm p,IC} \ {\rm D}_{\rm p,IC}, \ \alpha_{\rm p,IC}, \ {\rm Q}_{\rm p,IC}$	_	$\dot{\gamma}_{\mathrm{p,BH}}, \mathrm{D}_{\mathrm{p,BH}}$	$\alpha_{\mathrm{p,p}\gamma}, \ \mathrm{Q}_{\mathrm{p,p}\gamma}$
n	_	$lpha_{ m f,es}$	_	_	_	_	$\alpha_{n,p\gamma}, Q_{n,p\gamma}$
ν	_	$\alpha_{ m f,es}$	_	_	_	_	$Q_{\nu,p\gamma}$

Gao, Pohl, Winter, APJ 843 (2017)

- Numerically solves a set of coupled transport equations for all relevant particles.
- Energy "bandwidth" ~20 orders of magnitude (Radio-EeV)
- Very efficient: < 2 min per time-dependent simulation
- Photo-hadronic interactions following Hümmer et al., APJ 712, 2010

Physical origin of the SED ?

We scan each type of model for compatibility with observations

[Model-1/4] Hadronic γ-rays

- Constraints: proton-synchrotron, Bethe-Heitler, SSC emission, etc.
- Example (left): Bethe-Heitler overshoots X-ray
- Extensive parameter scan : no solution

Ruled out

[Model-2/4] Proton synchrotron as γ-rays

- Multiple constraints
- Can explain SED, but not SED + observed neutrino
- Extensive parameter scan : no solution

Also excluded

[Model-3/4] Pure leptonic SED (SSC model)

Remarkably simple assumptions:

R~10¹⁶ cm, B~0.16G and electrons with a $E^{-3.5}$ injection pectrum between $10^4 < \gamma < 6x10^5$

[Model-4/4] Hybrid SED

- γ-rays via leptonic SSC
- Subdominant hadronic emission in X-ray
- Reproduces neutrino energy 100TeV~PeV
- γγ pair production by EBL (z=0.34) absorbs
 - E >100 GeV photons

[Model-4/4] Hybrid : time-dependent

Remarkable: increasing p & e⁻ injection by factor 3 explains flare

Problem : proton power = 500 L_Edd

Solution ? Quiet state + radio => large emission region

Jet power limit => compact emission region, confine particle (low leak rate)

Two-zone model

- Proton power = 5 L_Edd (flare), 0.5 L_Edd (quiet)
- 0.27 neutrinos / yr (flare), 0 (quiet)
- Optical ~ Soft X ~ GeV-γ : leptonic
- Hard X ~ TeV-γ ~ Neutrino: hadronic

General remark: how dense should the source be ?

How unique is TXS ?

Summary : lessons learned from modeling TXS

- TXS0506+056 can be the source of the **one neutrino**
- The flare is an extraordinary state for neutrino production while the quiet state produces negligible neutrinos
- Most of the "elegant" one zone models faces severe constraints: (1) sub-PeV neutrino energy => low efficiency => jet power problem; (2) X-ray constraints => favors less cascade; findings in line with e.g. Keivani et al., Cerruti et al. Böettcher et al. etc.
- TXS requires a more complex model with multiple zones, to avoid the above contraints (see also Tavecchio et al, Liu et al)
- Lepto-hadronic signatures could be observable for nearby blazars in TeV as a break and hardening of the spectrum, coordinated with X-ray activity.
- TXS alone is unfortunately not enough to understand why this blazar is a particular neutrino source

Backup - parameters

Parameter table

Param.	Description	Fit	Hybrid		Hadronic	Leptonic
			Quiescent	Flare	Flare	Flare
\overline{z}	Redshift	fixed	0.34		0.34	0.34
B'	Magnetic field (G)		0.007	0.14	2.0	0.16
$R'_{\rm blob}$	Blob radius (cm)		$10^{17.5}$	10^{16}	10^{16}	10^{16}
$\Gamma_{\rm bulk}$	Doppler factor		28.0		20.0	28.0
$L'_{e,\mathrm{inj}}$	e^- injection luminosity (erg/s)		$10^{40.5}$	$10^{40.9}$	$10^{41.3}$	$10^{41.0}$
α_e	e^{-} spectral index		-2.5	-3.5	-2.3	-3.5
$\gamma'_{e,\min}$	Min. e^- Lorentz factor		$10^{4.2}$		$10^{3.3}$	$10^{4.1}$
$\gamma'_{e,\max}$	Max. e^- Lorentz factor		$10^{5.6}$	$10^{5.1}$	$10^{4.4}$	$10^{5.9}$
$L'_{p,\mathrm{inj}}$	<i>p</i> injection luminosity (erg/s)		$10^{44.5}$	$10^{45.7}$	$10^{47.0}$	_
$\gamma'_{p,\min}$	Min. p Lorentz factor	fixed	10.0		10.0	_
$\gamma'_{p,\max}$	Max. p Lorentz factor		$10^{5.4}$		$10^{5.6}$	_
α_p	p spectral index	fixed	-2.0		-2.0	_
$\eta_{ m esc}$	escape velocity of e^{\pm} and p	fixed	c/300	c/300	c/10	c/10
Results						
$L_{\rm Edd}$	Eddington luminosity * (erg/s)		$10^{47.8}$		$10^{47.8}$	$10^{47.8}$
$L_{ m jet}$	jet physical luminosity (in $L_{\rm Edd}$)		0.4	6.2	62.8	10^{-4}
$E_{ u,\mathrm{peak}}$	peak energy of ν spectrum (TeV)		250		330	_
$N_{ u}/yr$	Expected IceCube ν events		$10^{-3.8}$	0.27	9.8	0

Backup - neutrino flare 2014-2015?

Backup - neutrino flare 2014-2015?

DESY

Backup - neutrino flare 2014-2015?

Sufficient neutrino flux but overshoots SED

