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Anomaly searches

1 Introduction

e We are still looking for BSM physics;

e No clear anomalies in the near future:
- direct searches are not feasible;

- reduce model assumption in favor of agnostic methods;

e No loss in sensitivity

Are we fully exploring our data?
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Project B3b

1 Introduction
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Density estimation
1 Introduction

e Model agnostic — no signal involved;

e Estimating density of high-dimensional spaces:
- estimate background density (e.g. QCD jets);

- likelihood-ratio in signal and control regions;
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Density estimation
1 Introduction

VERY
HOT

HOT

e Model agnostic — no signal involved;

e Estimating density of high-dimensional spaces: WARM
- estimate background density (e.g. QCD jets);

- likelihood-ratio in signal and control regions; cooL

. . COLD
e New architectures is not all you need!
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Framing the problem
2 Learning the language of QCD

*based on "Learning the Language of QCD jets with transformers”, Finke T. et al., arXiv:2303:07364

Treating jets as sentences:
e discretize jets in pt, An, Ag;

e model the density auto-regressively;

e perform inference and sampling;
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Framing the problem
2 Learning the language of QCD

*based on "Learning the Language of QCD jets with transformers”, Finke T. et al., arXiv:2303:07364

Jets have continuous features, words are not:

e discretize jets in pr, An, Ad;
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Framing the problem
2 Learning the language of QCD

*based on "Learning the Language of QCD jets with transformers”, Finke T. et al., arXiv:2303:07364
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A ParticleNet classifier shows no information loss from discretization
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Training procedure
2 Learning the language of QCD

Training follows closely NLP approaches:

e embed features in continuous vectors;
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Training procedure
2 Learning the language of QCD

WQXi Wka
Vd

Training follows closely NLP approaches: X, = Ayvj, Ay = Softmax(

) (1)

e embed features in continuous vectors;

e perform self-attention;
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Training procedure
2 Learning the language of QCD

Traini 3 , WQXiWka
raining follows closely NLP approaches: x; = Ayvj, Ay = Softmax(———=—) (1)
e embed features in continuous vectors; vd
e perform self-attention;
e minimize cross-entropy with SGD. — —logpg (x) = — Z Z log po(xix;) (2)

ij<i
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Generation

2 Learning the language of QCD

Samples from the network:
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t Evaluating generative networks

2 Learning the language of QCD

e Classifiers are the best tools we have to test generative networks;
— see also arXiv:2305.16774

e The output approximates the quantity:

C(X) _ Ptrue (X) — Dtrue X) — C(X)
Ptrue (X) + Pmodel (X) Pmodel 1- C(X)
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t Evaluating generative networks

2 Learning the language of QCD

e Classifiers are the best tools we have to test generative networks;
— see also arXiv:2305.16774

e The output approximates the quantity:

C(X) _ Ptrue (X) — Dtrue X) — C(X)
Ptrue (X) + Pmodel (X) Pmodel 1- C(X)

e Optimal observable for a two hypothesis test according to the Neyman-Pearson
lemma
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t Evaluating generative networks

2 Learning the language of QCD

e Classifiers are the best tools we have to test generative networks;
— see also arXiv:2305.16774

e The output approximates the quantity:

C(X) _ Ptrue (X) — Dtrue X) — C(X)
Ptrue (X) + Pmodel (X) Pmodel 1- C(X)

e Optimal observable for a two hypothesis test according to the Neyman-Pearson
lemma

e Proper training is essential: architecture, over-fitting, calibration, ...
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t Evaluating generative networks

2 Learning the language of QCD

e Evaluation based on threshold-free quantities;
- ROC curves;

- corresponding AUC;
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t Evaluating generative networks

2 Learning the language of QCD

e Evaluation based on threshold-free quantities;
- ROC curves;

- corresponding AUC;

e Classifier builds an approx. W = perue/Pmodel;
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Evaluating generative networks
2 Learning the language of QCD

10% 4

e Evaluation based on threshold-free quantities;

- ROC curves; 2
8 2 i
- corresponding AUC; £ ;
e Classifier builds an approx. W = prrue/Pmodel; il
e AUC=0.62
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Dark showers
3 Representing dark showers
Create a representation space sensitive to dark jets

Benchmark signal: semi-visible jets

e 7' = 2TeV dark sects mediator;
e qq dark quarks charged under SU(3)g4;
e mgy, = 500MeV;

e A =m,, =m,, = 5GeV,;

QCD-like showers with fraction of invisible particles
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Self-supervision
3 Representing dark showers

e Neural Networks are not invariant to physical symmetries in data
e Typically solved through “pre-processing”
e Self-supervision: during training we use pseudo-labels, not truth labels

Key aspects of representations:

e invariance to certain transformations of the jet/event

e discriminative power

In CLR we construct a mapping to a new representation space
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Jet/Dark CLR
3 Representing dark showers

*based on JetCLR, arXiv:210804253 and "Semivisible-jets, energy-based models and self-supervision", arXiv:2312:03067

Contrastive Learning for anomaly detection:

e positive pairs: {(x;,x)} where is an augmented version of x;;

e anomalous pairs: {(x;,x;")} where x; is motivated by BSM;

Augmentation: any transformation (e.g. rotation) of the original jet
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Jet/Dark CLR
3 Representing dark showers

*based on JetCLR, arXiv:210804253 and "Semivisible-jets, energy-based models and self-supervision", arXiv:2312:03067

Contrastive Learning for anomaly detection:
e positive pairs: {(x;,x)} where is an augmented version of x;;
e anomalous pairs: {(x;,x;")} where x; is motivated by BSM;

Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a new repr. space, z: Z - R

Z. . z
L =s(zi.2) — s(z.2) s(enz) = Lo (3)
il14j
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Augmentations

3 Representing dark showers

rotations in [0, 27]:
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Augmentations

3 Representing dark showers
translations in [n, ¢|:

rotations in [0, 27]:
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Augmentations

3 Representing dark showers
translations in [n, ¢|:

rotations in [0, 27]:

permutation invariance:

Embedding  Transformer Encoder Sum Head
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Augmentations

3 Representing dark showers
translations in [n, ¢|:

rotations in [0, 27]:

Applying parop to a QCD jet:
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Anomaly scores
3 Representing dark showers
e (N)AutoEncoder based anomaly score: MSE(x, D(E(x)))

eiEH (X)

Po (x) = —¢ Ep(x) = MSE(x, D(E(x))) (4)

The corresponding anomaly score will be (approx) invariant to the augmentations
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3 Representing dark showers
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Resonant AD

4 Resonant anomaly detection

*based on "Back To The Roots: tree-based algorithms for weakly supervised anomaly detection", Finke T. et al., arXiv:2309.13111

|

e divide feature in signal and control | A ‘
region;

e get a background template in SR;

e train a classifier between datasets with
noisy labels;

® Wnoisy is still optimal:
— monotonically increasing function of

SB SR SB m

Pata(z|m € SB)
= pog(z|m € SB)

Pdata(z|m € SB)

Paata(e[m € SR) pg(x|m € SB)

Werue;

*taken from CATHODE
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BDTs for bump hunts

4 Resonant anomaly detection

Dataset:
e signal: W' — XY with X/Y — qq

o My = 35Tev’ my = 05TeV, Name # features Features
o . Baseline 4 {my,, Amy, 270 27002y
my = 0.1TeV;

A B=1,J; B=1,J3
Extended 1 10 {mo,, Am, TN.N-1) TN'Nfl}
Feature selection is an issue: for2<N <5

B=1,J1 _p=1,J2
{mn, Amy, Ty » TN }

for N <5
{ma, Amg, 747, 7572}

for N <9 and 8 € {0.5,1, 2}

e start from 4 features; Extended 2| 12

e extended sets up to 56 features Extended 3| 56

e "Extended 1" has uninformative
features!
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BDTs for bump hunts

4 Resonant anomaly detection
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BDTs for bump hunts

4 Resonant anomaly detection
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Conclusions

5 Conclusions

e Reliable density estimates are essential for future anomaly searches;
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Conclusions

5 Conclusions

e Reliable density estimates are essential for future anomaly searches;

e Transformers are powerful tool for:
— process jets at constituents level,

— density estimates and representation learning
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Conclusions

5 Conclusions

Reliable density estimates are essential for future anomaly searches;

Transformers are powerful tool for:
— process jets at constituents level,

— density estimates and representation learning

Resonant searches seem to prefer BDTs;

e No "winner-take-all", different problems require different solutions;

24/24 Density estimation for anomaly searches CRC annual meeting 2024 March 12, 2024



Conclusions

5 Conclusions
e Reliable density estimates are essential for future anomaly searches;

e Transformers are powerful tool for:
— process jets at constituents level,

— density estimates and representation learning
e Resonant searches seem to prefer BDTs;

e No "winner-take-all", different problems require different solutions;
Outlook:
e extending models to more complex signatures;

e include uncertainties;

e still a lot of work to do!
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Conclusions
5 Conclusions

e Reliable density estimates are essential for future anomaly searches;

e Transformers are powerful tool for:
— process jets at constituents level,

— density estimates and representation learning
e Resonant searches seem to prefer BDTs;

e No "winner-take-all", different problems require different solutions;
Outlook:
e extending models to more complex signatures;

e include uncertainties;

e still a lot of work to do!
Thanks for your attention!
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Transformer Encoder

6 Backup
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Normalized distribution

Density estimates
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