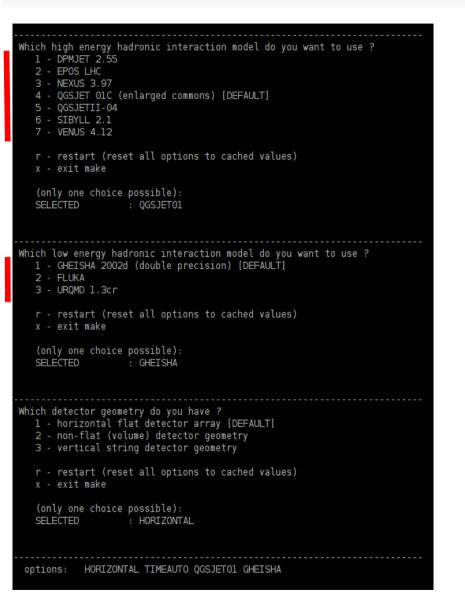
Options in CORSIKA


Tanguy Pierog

Karlsruhe Institut of Technology ,Institut für Kernphysik, Karlsruhe, Germany

KIT, Karlsruhe December the 13th 2017

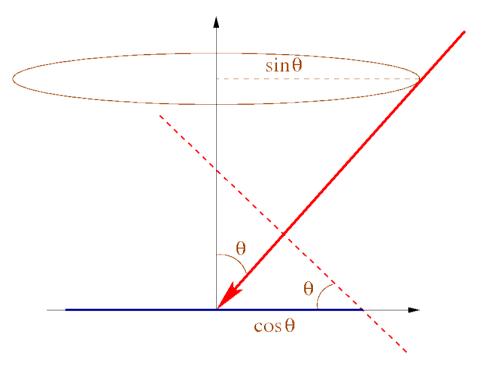
Models Selection

First selection is the high energy hadronic interaction model :

- See other talks on models to select the most suitable for your application
 - up-to-date:
 - EPOS LHC, QGSJETII-04 and SIBYLL 2.3c
 - DPMJETIII.17-1 to come
 - references:
 - QGSJET01
 - special use:
 - others

Low energy hadronic interaction model

FLUKA, Gheisha, UrQMD

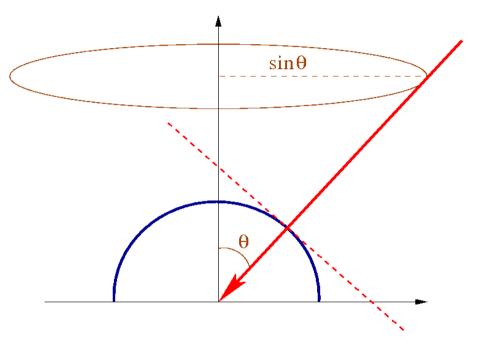


Detector geometry (only change the angular distribution of showers)

 Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

Non-flat (volume) detector (Magic, HESS,...)

 Vertical String detector (AMANDA, IceCube, Antares, ...)

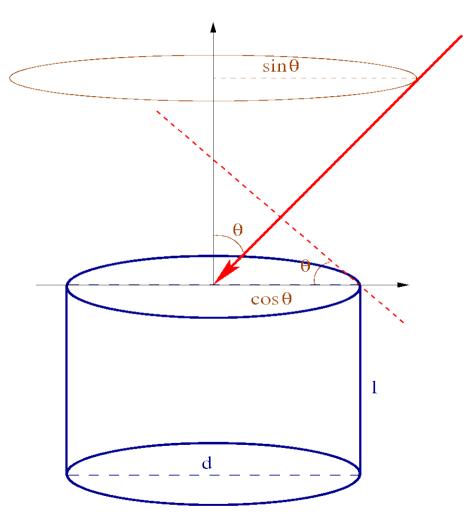

Detector geometry (only change the angular distribution of showers)

 Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

• $I \propto sin\theta \cdot cos\theta$

 Non-flat (volume) detector (Magic, HESS,...)

 Vertical String detector (AMANDA, IceCube, Antares, ...)


Detector geometry (only change the angular distribution of showers)

 Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

 Non-flat (volume) detector (Magic, HESS,...)

• $I \propto sin\theta$

 Vertical String detector (AMANDA, IceCube, Antares, ...)

Detector geometry (only change the angular distribution of showers)

 Horizontal flat detector (KASCADE, Pierre Auger Obs,...)

 Non-flat (volume) detector (Magic, HESS,...)

 Vertical String detector (AMANDA, IceCube, Antares, ...)

 $I \propto (d/2)^2 \cdot \pi \cdot \sin\theta \cdot (\cos\theta + 4/\pi \cdot l/d \cdot \sin\theta)$

Cherenkov Light

options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT]

- r restart (reset all options to cached values)
- x exit make

(multiple selections accepted, leading '-' removes option):

1a – Cherenkov for rectangular grid

- cherenkov array at ground
- 1b Cherenkov for det. system (IACT)

➡ HESS, Magic …

- with extension for more informations on particles
- 1c atmospheric corrections (CEFFIC)
 - suppression of part of the cherenkov photons (use to speed-up simulations)
 - light absorption in atmosphere
 - mirror reflectivity
 - quantum efficiency

options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values)

x - exit make

(multiple selections accepted, leading '-' removes option):

1d – Auger Cherenkov long. prof.

 not full simulation but time consuming

1e – Trajectory

follow motion of source on the sky

2 – LPM effect

 only if no thinning and high energy showers (with thinning, LPM included)

2a – Thinning

 Needed for high energy simulations to save time and disk space

2b – MULTIple THINning

3 – PRESHOWER

 preshowering of gamma primary before atmosphere

4 – Neutrino version

add neutrino into list of particle

4a – NUPRIM

- use HERWIG to have neutrino as primary particle
 - only primary neutrino will interact
- 4b ICECUBE1 (fifo)
- 4c ICECUBE2 (pipe output)
- 5 STACKIN
 - start shower with a list of particle

options: TIMEAUTO GHEISHA HORIZONTAL EPOS

- Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) - Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother - annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values)
 - x exit make

(multiple selections accepted, leading '-' removes option):

6 – CHARM

- options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT]
 - r restart (reset all options to cached values)
 - x exit make

(multiple selections accepted, leading '-' removes option):

 track and decay (using PYTHIA) charmed particles produced by QGSJET01 or DPMJET 2.55

6a – TAULEP

 for Tau lepton propagation and decay (using PYTHIA)

7 – Slant

 longitudinal profile as a function of slant depth and not vertical depth (default)

7a – Curved

- use a curved atmosphere instead of flat (default)
 - needed for large angles (>70°)

Dec 2017

7b – Upward

- track particle going upward
- allows upward going showers

7c – View-cone

- restrict primary angle generation to a cone around a given direction
 - to be used for atmospheric cherenkov detectors.

8a – PLOTSH

 only to make a "picture" of the shower

8b – PLOTSH2

 more compact output for PLOTSH (need some special library)

Dec 2017

T. Pierog, KIT - 11/19

Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT]

r - restart (reset all options to cached values)

x - exit make

options:

TIMEAUTO GHEISHA HORIZONTAL EPOS

(multiple selections accepted, leading '-' removes option):

8c – ANAHIST

- options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT]
 - r restart (reset all options to cached values)
 - x exit make

(multiple selections accepted, leading '-' removes option):

- plot various particle distributions from air shower in hbook file
 - Longitudinal prof, LDF, time, weight, ...
- 8d Auger-histos
 - hbook file but with many layers

8e – MUON-histo

- hbook file for muon production depth and muon distribution study
- 9 External atmosphere
 - Using Bernlohr C-routines.

9a – Efield 9b – RIGIDITY (Grappes)

options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) - Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother - annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT]

- r restart (reset all options to cached values)
- x exit make

(multiple selections accepted, leading '-' removes option):

10a – DYNSTAC 10b – REMOTE control a – CONEX

- use cascade equations to reduce simulation time
 - various option for 1D or 3D

b – PARALLEL

- parallel calculation
 - shell script or MPI

c – CoREAS

- radio signal emission from air shower
 - needs more input files

COAST Options ... (see R. Ulrich talk)

d1 – Inclined

- arbitrary direction for obs. level
- d2 ROOTOUT
 - produce the DAT file in ROOT

(d3 – COASTUSERLIB)

- appear only if COAST is installed
- to use COAST as external package for shower analysis

T. Pierog, KIT - 14/19

8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines)

8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events)

- 9a EFIELD version for electrical field in atmosphere
- 9b RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field
- 10a DYNamic intermediate particle STACK

TAU LEPton version with PYTHIA

options: TIMEAUTO GHEISHA HORIZONTAL EPOS

la - Cherenkov version

4 - NEUTRINO version

4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output

7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version

2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas

Which additional CORSIKA program options do you need ?

1d - Auger Cherenkov longitudinal distribution

4a - NUPRIM primary neutrino version with HERWIG

STACK INput of secondaries, no primary particle CHARMed particle/tau lepton version with PYTHIA

1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff.

SLANT depth instead of vertical depth for longi-distribution

le - TRAJECTory version to follow motion of source on the sky

- 10b Remote Control for Corsika CONEX for high energy MC and cascade equations
- b PARALLEL treatment of subshowers (includes LPM)
- CoREAS Radio Simulations
- Inclined observation plane
- d2 ROOT particle OUTput file
- d3 Use an external COAST user library (COrsika data AccesS Tool)
- interaction test version (only for 1st interaction)
- Auger-info file instead of dbase file
- COMPACT particle output file
- MUPROD to write decaying muons
- h2 prEHISTORY of muons: mother and grandmother
- annitest cross-section version (obsolete)
- hit Auger detector (steered by AUGSCT)
- *** Reset selection ***
- z *** Finish selection *** [DEFAULT]
- r restart (reset all options to cached values)
- x exit make

(multiple selections accepted, leading '-' removes option):

options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) Auger-info file instead of dbase file COMPACT particle output file MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother annitest cross-section version (obsolete) hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values)

x - exit make

(multiple selections accepted, leading '-' removes option):

e – Interaction test

 only first interaction to plot particle distributions (hbook)

f – Auger info file

 special output file on generated showers (primary parameters)

g – COMPACT output

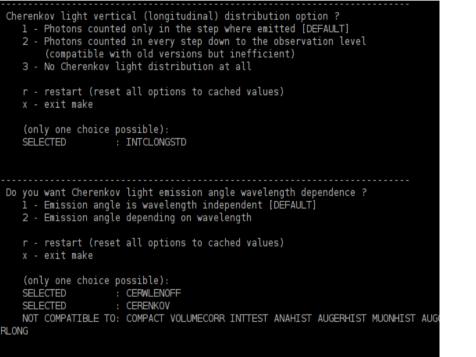
 compact output file to be used for low energy showers with few particles at ground

h – MUPROD

 write in particle list produced muons which do not reach observation level

options: TIMEAUTO GHEISHA HORIZONTAL EPOS Which additional CORSIKA program options do you need ? la - Cherenkov version 1b - Cherenkov version using Bernlohr IACT routines (for telescopes) lc - apply atm. absorption, mirror reflectivity & quantum eff. 1d - Auger Cherenkov longitudinal distribution le - TRAJECTory version to follow motion of source on the sky 2 - LPM-effect without thinning 2a - THINning version (includes LPM) 2b - MULTIple THINning version (includes LPM) 3 - PRESHOWER version for EeV gammas 4 - NEUTRINO version 4a - NUPRIM primary neutrino version with HERWIG 4b - ICECUBE1 FIFO version 4c - ICECUBE2 gzip/pipe output 5 - STACK INput of secondaries, no primary particle 6 - CHARMed particle/tau lepton version with PYTHIA 6a - TAU LEPton version with PYTHIA 7 - SLANT depth instead of vertical depth for longi-distribution 7a - CURVED atmosphere version 7b - UPWARD particles version 7c - VIEWCONE version 8a - shower PLOT version (PLOTSH) (only for single events) 8b - shower PLOT(C) version (PLOTSH2) (only for single events) 8c - ANAlysis HISTos & THIN (instead of particle file) 8d - Auger-histo file & THIN 8e - MUON-histo file 9 - external atmosphere functions (table interpolation) (using bernlohr C-routines) 9a - EFIELD version for electrical field in atmosphere 9b - RIGIDITY Ooty version rejecting low-energy primaries entering Earth-magnetic field 10a - DYNamic intermediate particle STACK 10b - Remote Control for Corsika a - CONEX for high energy MC and cascade equations b - PARALLEL treatment of subshowers (includes LPM) c - CoREAS Radio Simulations dl - Inclined observation plane d2 - ROOT particle OUTput file d3 - Use an external COAST user library (COrsika data AccesS Tool) interaction test version (only for 1st interaction) - Auger-info file instead of dbase file COMPACT particle output file - MUPROD to write decaying muons h2 - prEHISTORY of muons: mother and grandmother - annitest cross-section version (obsolete) 1 - hit Auger detector (steered by AUGSCT) *** Reset selection *** z - *** Finish selection *** [DEFAULT] r - restart (reset all options to cached values)

x - exit make


(multiple selections accepted, leading '-' removes option):

h2 – preHISTORY

- to get information about mother and grandmother particles of particles arriving at ground
 - MUADDI : muons
 - EMADDI : electrons and photons
- k annist test
 - nothing

I – Auger Hit

If Cherenkov

Che. longitudinal distribution

- differential (prod. per bin)
- integrated (sum in bin)
- none

Che. light emission

- refraction index wavelength independent
- refraction index wavelength dependent
 - emission angle change at low energy

Time Selection

Date and time :

Available only in expert mode

🔸 coconut -e

- Used only to print date in output file
 - default correct in most of the case
 - try something different only in case of problem before or after compilation when "date" appears.

Output Types

4 different types of output files :

- Control output (text file)
- Particle list (binary files)
 - DAT file for secondary particles of shower
 - CER file for Cherenkov photons
- Histograms
 - LONGitudinal profile and energy deposit (ASCII)
 - ANAHIST (CERNLIB)
 - AUGERHIST (CERNLIB)
 - MUONHIST (CERNLIB)
 - First Interaction (CERNLIB)
 - COAST (with or withoutROOT) (see R. Ulrich talk)
- Infos on shower production
 - DBASE
 - INFO (Auger)