
Next-generation CORSIKA

Particle cascade simulation framework

There exist a large scientific community that depends on precise modelling
of complex particle cascading processes in various types of matter. The most
obviously related fields are cosmic ray physics, astrophysical neutrino physics,
and gamma ray physics. This document summarizes the steps needed to ensure
that the optimal simulation tools are kept available in the future. The main
considerations and options are given, and the open questions are highlighted.

1 Introduction, History, Context

CORSIKA is the leading tool and of tremendous importance for the research
field related to air shower processes. It has been used from calculating inclusive
particle fluxes up to simulating ultra-high energy extensive air showers. It has
supported and shaped reasearch during the last ≈20 years. Originally designed
as a fortran 77 program as part of the detector simulation for the KASCADE
experiment, it has evolved enourmously over time and is used now by essentially
all cosmic ray experiments. The lack of flexibility in fortran has lead to a
not very maintainable significant piece of highly complex software. While the
performance is still excellent and the mainstream usecases are fequently tested
as well as verified, it is more-and-more difficult to keep development up with
requests and requirements. It is obvious that the complexity of the fortran
code and the complexity of new developments are getting in conflic with each
other. It is of paramount importance to make CORSIKA competitive for the
future, requiring a major step in software technology. This will ensure that
CORSIKA will continue to be the best and most comprehensive tool for air
shower simulations and related tasks.

2 Purpose, Aim

The purpose of CORSIKA is a “particle transport code with stochastic and
continuous processes”. A next-generation CORSIKA (ngC) will implement this
core task in the most direct, flexible and efficient way. The ngC will provide a
frameworke where all users can provide plugins and extensions for an unspec-
ified number of scientific problems to come. CORSIKA will take a final step
from being an air shower simulation program, to becoming the most powerful
framework for particle cascade simulations available.

1



The ngC must support particle tracking, cascade equations, thinning, vari-
ous particle interaction models, output options, parallel operations, GPU sup-
port, various possibilities for user routines to interact with the simulation pro-
cess, full exposure of particles while they are tracked/simulated. Production
of Cherenkov photons, radio signals, molecular bremsstrahlung should be much
facilitated in this way and provided as standard output options.

ngC will be the necessary work horse for cosmic ray, neutrio and TeV/EeV
gamma ray astronomy.

Millions to billions of CPU hours of high performance computing will be
spend on air shower simulations for CTA, IceCUBE, HESS, Magic, Auger, TA.
It is up to ngC to make sure this is done as efficiently as possible and to max-
imise the resulting physics output. In this respect ngC plays an important
role in spending of valuable resources and is at the same time a fundamental
cornerstone to support the physics output of many large experiments.

3 Main design components

The main steps of a particle tranport code with processes is illustrated in Fig. 1.
The central loop involves a stack for temporary storage, a geometric transport
code, and a list of processes that can lead to secondary particle production or
also absorption.

3.1 Computational efficiency

Computational efficiency is not optional for ngC. The efficient use of expensive
large-scale resources is a crucial requirement, and must be considered from the
early planning.

The use of external code and libraries must be minimized to the absolute
minimum in order to stay conflict-free and operational over a very extended
period of time. Individual exceptions might be possible, but must be well moti-
vated and discussed before use. For each functionality it should be evaluated if a
basic re-implementation is feasible. In any case, whenever possible, appropriate
wrappers in ngC should hide the implementation details of external packages
from the users inside ngC.

A computer language offering high level of design flexibility and at the same
time excellent compiler and optimization support is required. It is an advantage
to chose a language that also has non-science relevance and thus assures long-
term support, development and expertise.

For this purpose C++ will be chosen. The start of ngC will be based on the
dialect C++11/14/17, but this can be revised in the future.

Run-time dynamic design patterns like virtual classes or dynamic libraries
should be avoided.

Data copy operations must be minimized, or performed as late as possible.
The use of “lazy” functionality, which is executed only delayed when actually,
needed should be promoted.

2



Energy losses, 
ionization, 
Cherenkov, 
Radio, 
...

Interactions, 
kill particles
decay
...

List of 
processes

Configurtion

provides

provides

Transport 
Medium

«write»

Primary 
particle(s)

Ordered access

Stack

create particles

provides

provides

Output

discrete process

«step-length»

Transport

Figure 1: Scheme of particle transport code with processes.

Compiler and CPU optimization should be fully considered for ngC. Produc-
tion versions of the code should take full benefit from all available optimizations.
The execution of particular code on GPUs (or maybe even more custom hard-
ware) must be transparently possible.

Parallel and multi-core computation are standard.

3.2 Related projects and previous work

ngC will heavily depend on expertise gained with the original CORSIKA pro-
gram.

MCeq is a recent tool dedicated to the solution of cascade equation. It
already offers GPU support and very high computational efficiency. CONEX is
a cascade equation air shower simulation program that has been integrated in

3



CORSIKA and provides enourmous increase in computation speed.
dynstack is a recent extension of CORSIKA. Principle ideas of this should

be placed inside the stack of ngC.
COAST has been developed in CORSIKA with the aim to offer plugin-

opportunity for scientist. The functionality of COAST will be available in ngC.

3.3 Output

The output generation of ngC will be by far more flexible than in the current
CORSIKA. The user will be able to decide for his specific case what kind of
output is optimal, with the additional possibility to pipe the output directly
into subsequent workflow steps without any need to store on disk.

There will be a new form of standard output file that is flexibile in content,
and scales well from air showers with just a few particles on ground up to air
showers with billion of particles on ground.

The old binary output format “DATxxxxxx” file can be one option but with
all the known limitations.

HDF5 may be considered, but it has at least the disadvantage of being an
external dependence.

File-system based solution with potentially tared or ziped directory struc-
tures can offer similar performance and flexibility.

It might be interesting to investigate the advantage of compressed ASCII
output versus pure binary output. Advantages are: human readability, complete
architecture independence. Disadvantages can include: potential speed penalty,
potential space penalty.

Since the output is very important, it might be worth to perform an open
selection process considering a systematic benchmarking. To some part this has
been done already in the past.

4 Tools and infrastructure

The basic development infrastructure for ngC will be provided at KIT. The
most useful tool for collaborative development currently available is git, which
allows to have a very dynamic and large base of contributors, and at the same
time a well controlled access to the main code base via pull requests.

We will use a gitlab server for the hosting, the default choice for this is
gitlab.kit.edu.

Unit test must yield a very high coverage of the ngC code. Unit tests are
executed automatically by a jenkins (or equivalent) service on a regular basis.

Further validation and high-level functional tests will accompany the regular
testing.

Automatic testing will provide a well defined list of supported environments,
combined with a control over a specified set of different combinations of simu-
lation options.

4



5 Main challenges

While there are many challenges, here is a list of topics that require particular
dedicated attention. These topics are more-or-less directly linked to the under-
lying/internal physics of the cascading process and ask for very intelligent and
likely highly complex solutions.

1. Efficient integration of electron-gamma cascades (previously EGS4)

2. Random-number generation in an inherent multi-core, parallel, CE envi-
ronment.

3. Investigate the limits of equivalence between CE and detailed tranport
(dE/dX, Cherenkov, lateral structure, radio production, ...)

4. GPU optimization.

6 Details

Taking these considerations into account a more detailed scheme of the simula-
tion workflow can be produced. In Fig. 2 this is outlined. Many of the aspects
shown in this diagram still need to be determined and optimized. Since the
basic design is given here, alternative functionality and building blocks can be
developed in parallel.

6.1 Main loop

A central part is the loop over all particles on the stack. Those particles are all
transported, and processed. As part of this process also cascade equation tables
can be filled. If the stack is empty (or maybe according to another trigger),
the cascade equations are processed, which can once more also fill the particle
stack. Thus, a double-loop is required here in order to process the full particle
cascade.

while (particleStack not empty) {

while (particleStack not empty) {

particle = particleStack.get();

transport(particle);

}

cascade_equations_solve();

}

The transport function needs to handle geometric transport of neutral and
charged particles, thus, magnetic and electric deflections are implemented. The
distance of tracking steps is limited by the type of processes considered. The
highest cross section process limits the maximum step size, the that is simulated
is randomly selected accorind to its probability. For each step, continuous pro-
cesses are calculated, which can be numerous: ionization, Cherenkov photons,
radio emissions, etc. There is potentially a huge (and most straightforward)
potential for GPU optimization is continous processes.

5



Parallel Stacks

Parallel Stacks Stack

Config

Modular and structured,
 

Depending on user modules/plugins/...

Processes

Energy losses, 
ionization, 
Cherenkov, 
Radio, 
...

Interactions, 
kill particles
decay
...

Transport

Output Streams

List of 
continuous
processes

Stepping

List of 
stochastic
processes

provides

provides

provides

Transport 
Medium

«write»

Migration
matr ix

(container)

provides

dX step

Migration,
coupled CE

Primary 
particle(s)

Ordered access

Stack

Cascade
Equations

Classify,
Thinning

create particles

provides

provides

User defined 
data sinks

standard output 
container

data pipeline, 
sockets«write»

discrete process

update

move
particle no discrete process

«step-length»

Tracking create particles

«write»

MPIClassify,
Thinning

Figure 2: Main building blocks and workflow steps of ngC already highlighting
the fundamental functionality and flexibility.

6



transport(particle) {

while (particle.exists()) {

step = next_step_length();

for (continuousProcesses cp){

cp.update(particle, step);

}

particle.move(step);

if (stochasticProcess(step)) {

stochasticProcess(particle);

}

}

}

The corresponding cascade equations soltuion is performed as a fully equiv-
alent functional block to normal tracking. A part of the processes is simplied
to migration matrices, however, it is the aim to use the observed migration
in energy, location and particle types also for the production of: ionization,
Cherenkov light, radio emission, etc. The physical limits of the quality of this
must be evaluated later. Processes like ionization are straightforward and must
be handled in particular to record the longitudinal shower development, how-
erver, processes that depend a lot on geometry, like Cherenkov or radio emission,
can be just an approximation. But it is up to detailed studied to evaluate this
and adapt it to potential use cases.

cascade_equations_solve() {

while (table.not_empty()) {

tableNew = (StochasticAndMove) * table;

for (continuousProcesses cp) {

cp.update(table, step);

}

if (tableNew.contains_entries_above_CE_threshold()) {

create_particles_on_stack()

remove_from_tableNew()

}

particle_output()

particle_regenerate() // end of CE

table = tableNew

}

}

6.2 Atmosphere and environment and geometry

The basic geometry of ngC is spherical.
The center of the geometry for ngC is related to the most convenient access

to environmental data. Since the basic geometry of
Tradidionally the medium of transport for CORSIKA was the atmosphere. It

is one purpose of ngC to allow much more flexible combination of environments.
This includes water, ice, mountains, the moon, etc. In this case also the interface
between different media becomes a matter of significance.

The environment must at least provide
Interfaces between media can provide data about both adjacent media, e.g.

refractive indices, densities, etc. Processes can use this information.

7



6.3 Particle data and stacks

There will be no dedicated class describing an individual particle. Instead par-
ticles are generally represented by a reference/proxy to data on a stack. Where
stacks can be a fortran common block, dynamic C++ data, a file-based cache,
or any other source/storage of particle data.

7 Summary

The steps towards ngC outlined here are crtical to ensure the future of scien-
tific research in fields, where the simulation of particle transport cascades with
stochastic and continuous processes are involved. The reach of the resulting
framework will be far beyond the original CORSIKA program. It is up to the
scientific community to decide in which concrete applications ngC will be used
in the future. It is the aim to offer long-term support for the ngC program over
a period of at least 20 years.

A much better access on the air shower physics simulation process will be
one of the keys to resolve the main questions about cosmic ray physics, the
universe at the highest energies, and related scientific questions.

8


