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Some Ressources

[ If you have questions, please interrupt me and ask! J

This lecture is based on:
= "“Modern Machine Learning for LHC Physicists",
552022 lecture notes of Heidelberg University, arXiv: 2211.01421

Further Reading:
o Summary of HEP-ML papers: "HEPML - Living Review”
https://iml-wg.github.io/HEPML-LivingReview/
o Tipps for efficient training of NNs:
https://karpathy.github.i0/2019/04/25/recipe/

@ About good coding practices in science: https://goodresearch.dev/

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Tutorials and Hands-On Session

In the afternoons, we will have
o Wed: 1:15h hands-on session ML (“A Diffusion Model from Scratch”)

https://github.com/SofiaSchweitzer/crc_summer_school/tree/main

@ Thu: 1h to finish hands-on and more Q&A
Led by the two ML experts:

Nicole Hartman (ATLAS, TU Munich) Sofia Palacios Schweitzer (TH, Uni Heidelberg)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Why Machine Learning?

Who has used ML so far?

Claudius Krause (HEPHY Vienna) ML 4 HEP



..

INSTITUTE OF
HIGH ENERGY PHYSICS

W
—A
7/4'\\? HEPHY

Why Machine Learning?

Data volume

«Peakluminosity  —integrated luminosity

MS is=7TeV L=

B
z
E

Events / 1.5 GeV/
F
8

1000]

500
https://lhc-commissioning.
T0 120 130 140 150 , web.cern.ch/schedule/

My (GeV) HL-LHC-plots.htm
Large amounts of labeled (simulation) and unlabeled (experiment) data.

= ML works best with lots of data

S/(S+B) Weighted

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data volume

S

Data complexity

Shower Hadronization ?eledors
@ == |

High-dimensional & highly correlated data.
= ML can handle that well

—

Claudius Krause (HEPHY Vienna)
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Why Machine Learning?

Data volume Data complexity

S

i emEEE®

Signal detection

1 [le [l

i

sB SR S8 om Hallin et al. [2109.00546]

au.

Rare and elusive signals among large backgrounds.
= ML has high sensitivity

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data volume Data complexity  Signal detection
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Computing budget

_ o000 ‘CM‘SPu‘inc ‘ ]
[y Total CPU
§ 40000] —a- vosco rremer s

-@- Weighted probable scenario 4
& IS ey J/
8 30000
]
2 20000
(]
g 10000 https://twiki.cern.ch/
= = twiki/bin/view/

2071 2023 2025 2027 2029 2051 2033 2035 2037 CMSPublic/CMSOffline
Year ComputingResults
Simulation & analysis are computationally expensive.
= ML is fast

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Why Machine Learning?

Data volume Data complexity ~ Signal detection Speed

S
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Increasing interest

Papers with ‘neural network’ or ‘machine learning’

- hepex

%90 133 2000 2005 200 2015 2020 2025 via “The INSPIRE REST API”

We see about 300 papers / year.
= ML is everywhere

Claudius Krause (HEPHY Vienna) ML 4 HEP



AUSTRIAN
ACADEMY OF
SCIENCES

i
| >/,‘\§ HEPHY
Why Machine Learning?

Data volume Data complexity

Signal detection

SN

Speed Interest
Wi emEEEe | |

ML is fun

via midjourney: “Albert Einstein
smiling while having fun coding

= Like Galileo Galilei looking through the telescope for the first time!

Claudius Krause (HEPHY Vienna)

ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models

© Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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What is Machine Learning?

Tom Mitchell, ML Pioneer

‘ML ...

is the study of algorithms that allow computer programs

to automatically improve through experience and by use of data.”

@ algorithm: a method to perform a task of interest.

@ experience: training data, which the algorithm can use

to learn how to perform a task.

© improve: a way to measure the performance on the

training data.

@ :automatically: a strategy to exploit the training data,

without external input.

Claudius Krause (HEPHY Vienna)

ML 4 HEP
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What is Machine Learning?

Tom Mitchell, ML Pioneer

Judea Pearl,
Turing Award Winner

to improve through experience and by use of data.”

“ML . ..is the study of algorithms that allow computer programs

@ algorithm: a method to perform a task of interest.

@ experience: training data, which the algorithm can use
to learn how to perform a task.

© improve: a way to measure the performance on the
training data.

Q . a strategy to exploit the training data,
without external input.

”

“ Machine Learning is just glorified ‘curve fitting’

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024
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What is Machine Learning?

Tom Mitchell, M*

Judea Pearl,

Turing Award Winner

“ML . ..is the study of algorithms that allow computer programs
to improve through experience and by use of data.”

@ olonvith—- - —-+l~d +n narform 3 task of interest.
“thm can use

In physics we fit a function of interest to data
in a statistically well-defined way. . the

Q .« suawcgy o exploit the training data,
without external input.

”

“ Machine Learning is just glorified ‘curve fitting’

Claudius Krause (HEPHY Vienna)

ML 4 HEP October 2 & 3, 2024
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We fit a function of interest to data in a statistically well-defined way.
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[Neural networks are parametric numerical functions y = f(x; 6) that are inspired by biology. J

y=0(w-x+b)
‘L I—I—) scalar weight w and scalar bias b = 6

non-linear activation

xy l\»

“ReLU"” “leaky RelLU" “sigmoid/tanh”

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We fit a function of interest to data in a statistically well-defined way.
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[Neural networks are parametric numerical functions y = f(x; 6) that are inspired by biology. J

y=0(X-iwi-xi+b)
vector weight w

X non-linear activation and scalar bias b = 6
1
) looks like a “real” neuron now:
X; y
Xn

by Dhpl080 via https://commons.wikimedia.org/w/index.php?curid=4293768

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We fit a function of interest to data in a statistically weII—deflned way.
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[Neural networks are parametric numerical functions y = f(x; 6) that are inspired by biology. J

yj =0 (X1 wj,i - Xi + b))
matrix weight w
X1 non-linear, element- and vector bias b = 6

‘@ y1 wise activation

x2 <X

() R
= this is called a “layer”.
X3

Claudius Krause (HEPHY Vienna) ML 4 HEP
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[Neural networks are parametric numerical functions y = f(x; 6) that are inspired by biology. J

We can now put everything together to a Network:

v “import torch
\\/ ‘class DNN(torch.nn.Module):
""" yvanilla NN """

def __init__(self):

[

vv; N\ y1 Super(DNN, self).__init__()
’«’»‘/ ‘/

/RN N

N/AY

self.inputlayer = torch.nn.Linear(3, 4)
self.hiddenlayer = torch.nn.Linear(4, 4)
self.outputlayer = torch.nn.Linear(4, 2)

y2 def forward(self, x):
x = torch.nn.LeakyReLU()(self.inputlayer(x))
x = torch.nn.LeakyReLU()(self.hiddenlayer(x))
x = self.outputlayer(x)
return x

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We fit a function of interest to data in a statistically well-defined way.

@ The Loss function L£(f(x;8),y) encodes our objective: | smaller = better |

? There are many different ways to encode the same objective, which one is the best?

o best model at Opesy = argming L(f(x;0),y)
Which set of @ describes the training data best? = maximize likelihood p(x¢rain|0)

= best loss is the negative (log) likelihood: £ = — log p(X¢rain|6)

(We'll get back to this with examples in a few slides.)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We fit a function of interest to data in a statistically well-defined way.
How do we minimize L(f(x;6),y)?

o (Stochast|c) gradlent descent: 9t+1 — 9t — <£> szz[\)mz;rD:N‘(m))rch‘optin‘Adam(myJNN‘paramstsrs(), 1r=1e-3)
J J for 1 in range(num_epochs):
for batch, label in data:
y = my_DNN(batch)

@ backpropagation Lozs - loss_func(y, label)

optimizer.zero_grad()

taken care of “under the hood" Loss.backward()|
o autodifferentiation / by Pytorch/tensorflow

The loss landscape can be very complicated.
Adaptive optimizers, like ADAM, use momen-
tum to improve convergence.

MODE CONNECTIV

Adam: A Method for Stochastic Optimization [1412.6980]

Claudius Krause (HEPHY Vienna) ML 4 HEP



.. 1)
QAW e I . Ny HEPHY

N D

HIGH ENERGY PHYSICS

But: we have to be careful!

o NN can overfit (memorize) training data and
stop generalizing!

class DNN_with_dpo(torch.nn.Module):

bability=0.):
Super (DNN_with_dpo, self).__init__()

self.dpo = dropout_probability

@ to diagnose (and combat): introduce separate e - e, 5

self.hiddenlayer = torch.nn.Linear(4, 4)
self_outputlayer = torch.nn.Linear(4, 2)

validation (for model selection) and test sets. . forardtzre,

= torch.nn. LeakyReLU() (se1F. tnputlayer (x))
X = torch.nn.Dropout(self.dpo:

X = torch.nn.LeakyReLU()(self.hiddentayer(x))
x = torch.nn.Dropout(self.dpo)(x)

X = self.outputlayer(x)

return x

@ to combat: regularize, for example with
dropout or L2 norm B e e Aani(ny_0M. parameters(), Lroie-3, weight_decay=8.61)

for 1 in range(num_epochs):
for batch, label in data:

¥ = ny_DNN(batch)
loss = loss_func(y, label)

optintzer.zero_grad()

@ Decreasing the approximation error increases ety
the generalization error: the bias-variance trade-off

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Different Learning Paradigms

likelihood-free
Inference

(weakly /semi/fully)\
Supervised Classification
Learning

Generative Unsupervised Machine
Models Learning Learning

Anomaly

Detecti Regression
etection

Reinforcemen
Learning

Claudius Krause (HEPHY Vienna)
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Particle Physics Analyses

Recon-
struction

Nature

Pattern

New Physics? recognition

G

Recon- Event

Quantum Scattering - struction selection
Amplitudes sampler simulattion simulation

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

h o:)’)' Recon-

struction
Nature Detector

Pattern
recognifion

.

)1 ' Rocon .
Dmdwr struction
simulation

Zz @ Shower +

Quantum [ Scattering MC hadron.
Theory [ Amplitudes I}  sampler

simulattion

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP

@ Regression

> reconstruction: momenta, energy
> expensive functions
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HIGH ENERGY PHYSICS

What kind of ML are we using and where?

@ Regression

> reconstruction: momenta, energy
> expensive functions

o Classification

> reconstruction: particle type
> signal vs. background

Shower + ") I ' Rm:mr‘
Quantum Scattering MC hadron. Dmdvr struction |\
Theory Amplitudes sampler simulattion simulation

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

@ Regression

> reconstruction: momenta, energy
> expensive functions

Nature

o Classification
Pattern

recogaiion > reconstruction: particle type
> signal vs. background

@ Reinforcement Learning
> accelerator control

L]

Shower + ’) I Recon-
hadron. D'Pedwr o
simulattion simulation

MC

sampler

Quantum
Theory

§canerin§
Amplitudes

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

@ Regression

T\ .
'-)),I T E Ryt > reconstruction: momenta, energy
Howrs ﬂ- <' Diiedey > expensive functions
5 Yos ' o Classification
Armeomrermeroece e i > reconstruction: particle type

te® > signal vs. background

@ Reinforcement Learning
> accelerator control

o Generative Models

> event generation
> detector simulation

Recon-
struction

@ Yoo NN

\
MC hadron. Detector J
sampler simulattion simulation

Quantum
Theory

Figure inspired by R. Winterhalder

Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

@ Regression

T\ .
Pl B e B om > reconstruction: momenta, energy
He " <' N > expensive functions

ﬁ- Yos ' o Classification

i oy > reconstruction: particle type
te® > signal vs. background

@ Reinforcement Learning
> accelerator control

&

Quantum
Theory

Recon-
struction

Detector
simulation

hadron.
simulattion

¢ @ Generative Models
> event generation
> detector simulation

@ Simulation-based Inference

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

@ Regression

> reconstruction: momenta, energy
> expensive functions

o Classification

""" > reconstruction: particle type
> signal vs. background

Reinforcement Learning

&

Quantum
Theory

Recon-
struction

Detector
simulation

hadron.
simulattion

> accelerator control
@ Generative Models

> event generation
> detector simulation

Simulation-based Inference

Anomaly Detection

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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What kind of ML are we using and where?

@ Regression
@» d : > reconstruction: momenta, energy
— - <' > expensive functions

Classification

> reconstruction: particle type
> signal vs. background

o @ Reinforcement Learning
Quantum g hadron. Datector xﬁﬁ:ﬂ i » accelerator control
Theory simulattion simulation

@ Generative Models

> event generation
working on: > detector simulation

tabular data, point clouds, graphs, pixel/voxel J

Simulation-based Inference

Anomaly Detection

Figure inspired by R. Winterhalder
Claudius Krause (HEPHY Vienna) ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models

© Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Different Learning Paradigms

likelihood-free
Inference

(weakly/semi/fully.
Supervised Classification
Learning

Generative Unsupervised Machine
Models Learning Learning

Anomaly

- Regression
Detection g

Reinforcemen
Learning

We first focus on supervised learning: when labels are available
@ Regression: predict continuous values, like a scattering amplitude

o Classification: predict discrete label, like “signal” or “background”

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Regression and the MSE-loss

[We have data (x;j, y; = f(x;)) and want to learn fp(x) = f(x). ]

= maximize the probability for the fit output fy(x;) to correspond to the training points y;.

_ 1 y—hte))?
P(X|9) = Hj V270, exp 202

2
= logp(x|0) = —%; (M) + const.(6) = La=L <|yj 2:6 /)\(/J) )
I

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Regression and the MSE-loss

[We have data (x;j, y; = f(x;)) and want to learn fp(x) = f(x). J

= maximize the probability for the fit output fy(x;) to correspond “usual” x? minimization

9) =TT 1L _|yj—f9(><j)|2
P(X| )_H_/ V270, exp 202

2
= logp(x|0) = — ¥ (L’%ﬁl.) + const.(0) = Liy =Y <|}’J;2\I>\(IJ) )

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Regression and the MSE-loss

[We have data (x;j, y; = f(x;)) and want to learn fp(x) = f(x). ]

= maximize the probability for the fit output fg(Xj) to correspond to the training points y;.

—717. 1 _|yj'—fé(><j)|2
p(x|68) = IT; Toms &P 27
2
= logp(x|0) = -Y; (L’%ﬂL) + const.(0) = L =Y <|J’1;2(I>\<IJ)| )

[If error 0 unknown, or same for all: L= Qﬁ, lyj — fg(xj)|2 = 21(—7MSE ]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Binary Classification and the BCE-loss

In Binary Classification, we want to predict a discrete label:  class 0 or class 1.
= interpret NN output as p(class 1)

= maximize p(x;) predicting the correct label y;.

p(x|6) =Hj{lf(xj) ify; =1 :ij(xj)}’j(l_p(xj))(l—yj)

p(xj) if yj =0
= logp(x|0) = ¥ yjlog p(x;) + (1 - y;) log (1 — p(x;))

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Binary Classification and the BCE-loss

In Binary Classification, we want to predict a discrete label:  class 0 or class 1.
= interpret NN output as p(class 1)

= maximize p(x;) predicting the correct label y;.

peit) =T {; P09 020 =Thpbs)(a—p)) 0

= logp(x|0) = ¥ yjlog p(x;) + (1 - y;) log (1 — p(x;))

[=> Lece = — X yjlogp(x) + (1 —y;) log (1 — p(x;)) Lce=—Yjec Y logp;(XJ)]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Performance Metrics of Classifiers
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o false positive rate (background efficiency): FP%N

working point

class 0
~

TN

g

class 1
-~

FP

plx)

Claudius Krause (HEPHY Vienna)
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Performance Metrics of Classifiers
spam e-mail: no FP
o false positive rate (background efficiency): FP%N class 0 class 1
~a Y o
TN
FP
o

Claudius Krause (HEPHY Vienna) ML 4 HEP
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o false positive rate (background efficiency): FP%N

@ true positive rate (signal efficiency): %

working point

class 0
~

g

FN

class 1
-~

TP

plx)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Performance Metrics of Classifiers

@ true positive rate (signal efficiency):

o false positive rate (background efficiency): FP%N

__TP
TP + FN

450
~a

health screening: no FN

class 1
-~

plx)

Claudius Krause (HEPHY Vienna)
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o false positive rate (background efficiency): FP%N

@ true positive rate (signal efficiency): %
@ accuracy: TP & EP i -|I:—N FT

working point

class 0
~

1t

plx)

class 1
-~

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Performance Metrics of Classifiers

o false positive rate (background efficiency): FP%N

@ true positive rate (signal efficiency): %
@ accuracy: TP T IP i -||:—N T

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Motivation: Generative Models

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -
given: f(x) want: x ~ f(x)/ [ f(x)

Claudius Krause (HEPHY Vienna) ML 4 HEP


midjourney.com

n \ie
QAW  iwarer | >/,‘\é HEPHY

Motivation: Generative Models

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -

given: f(x) want: x ~ f(x /ff

They can be understood as fancy random number generators, with the numbers being:

e pixels of an i

3
D
o
®

wod * Aeurnolpru ein

= image generators like MidJourney, DALL-E

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 20/73
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Motivation: Generative Models

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -

given: f(x) want: x ~ f(x /ff

They can be understood as fancy random number generators, with the numbers being:
e translated to words

&)

How can | help you today?

e pixels of an i

3
D
o
®

= chatbots like ChatGPT,
GitHub CoPilot

= image generators like MidJourney, DALL-E

wod * Aeurnolpru ein

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 20/73


midjourney.com

n \ie
QAW  iwarer | >/,‘\é HEPHY

Motivation: Generative Models

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -

given: f(x) want: x ~ f(x /ff

They can be understood as fancy random number generators, with the numbers being:

e pixels of an image e translated to words e four momenta of particles
MADBGRAPH

&)

How can | help you today?

SHERPA

= event generators like
MadGraph and Sherpa

= chatbots like ChatGPT,
GitHub CoPilot

= image generators like MidJourney, DALL-E

wod * Aeurnolpru ein

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 20/73
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The Landscape of Generative Models.

Variational Autoencoder (VAE)

= Compressing data through a bottleneck.

Iatent
. . Decoder
space

—___ y data

Generative Adversarial Network (GAN)

= Generator and Discriminator play a game against
each other.

latent data
Generator N

Diffusion Models

= Gradually add noise and revert.

[ data ]—>( +noise | —| latent
denois: space

Normalizing Flows

= Bijective map to a known distribution.

latent Bijector data
—
space space

Claudius Krause (HEPHY Vienna)

ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Normalizing Flows in a Nutshell

“easy” base T 3 “target”
distribution N buegtlve transfor N distribution
mation z = f(x)

m(z) p(x)

p(x) = 7(f(x)) |det 252

density estimation, p(x)

sample generation

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions:

@ Regression: Mean Squared Error Loss
@ Binary classification: Binary Cross Entropy Loss
° ...

Normalizing Flows give us the log-likelihood (LL) explicitly!

= Maximize log p (the LL) over the given samples.
L =—Y,logpy(x)

= If we don't have samples, but a normalized target g(x), we can use the KL-divergence.

£ = Dualpo,a] = [ dx pox) log 25} = (G 1og B3

Claudius Krause (HEPHY Vienna) ML 4 HEP
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of of (X

7(%) = 7(Z) |det a(z) = n(f (%)) det%
00 T 28
n(z) = const. o

Claudius Krause (HEPHY Vienna) ML 4 HEP
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of of (X
(X) = m(Z)|det @ _ = (f71(X)) |det #
0z o0X
00 T 28
n(z) = const. o
ul:ll IIII(:I2 llIIDI:I ”oe II”o"sl 1 III;Z

Claudius Krause (HEPHY Vienna) ML 4 HEP
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of (%) of (%)
det =57 7

-1

(X) = n(2) = (f~1(X)) |det
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of (%) of (%)
det =57 7

-1

= n(f1(x))

det

7(%) = n(3)

() = const,

Claudius Krause (HEPHY Vienna) ML 4 HEP
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of (%) of (%)
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of (%) of (%)
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det

7(%) = n(3)
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of (%)
ox

of (Z) |~

P det

7(%) = 7(2) |det = n(f1(%))

() = const,
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At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of (%)
ox

of (Z) |~

P det

7(%) = 7(2) |det = n(f1(%))

() = const,

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Base distributions

=1 e
(2) ‘det "’g—()] = n(f®) ]det of &)

A
X
I

@ Can be any distribution with only 2 requirements:

> We can easily sample from it
» We have access to 71(x)

@ Sets the initial domain of the coordinates.

@ Most common choices:

» uniform distribution (compact in [a, b])
» Gaussian distribution (in R)

@ Topology should match the topology of the target space.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We need a trackable Jacobian and Inverse.

(%) =  #(@) ‘det 303

= (N R)) [det 2

o First idea:  making f a NN.

X inverse does not always exist
X Jacobian slow via autograd

X ‘det %‘ xO(n3 )

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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HIGH ENERGY PHYSICS
——

We need a trackable Jacobian and Inverse.

(%) =  #(@) ‘det 9ie)

= () [det )|

o First idea:  making f a NN.

X inverse does not always exist
X Jacobian slow via autograd

X ‘det %‘ xO(n3 )
= Let a NN learn parameters « of a pre-defined transformation!

o Each transformation is 1d & has an analytic Jacobian and inverse.
:>f()_<'; I_C') = (Cl (X1; Kl), C2(X2; K2), e, C,—,(Xn; Kn))T

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We need a trackable Jacobian and Inverse.

(%) =  #(@) 'det ]

= (N R)) [det 20

o First idea:  making f a NN.

X inverse does not always exist
X Jacobian slow via autograd

X ‘det %‘ xO(n3 )
= Let a NN learn parameters « of a pre-defined transformation!
o Each transformation is 1d & has an analytic Jacobian and inverse.
=f(%%) = (Cl(xaix1), G(x2iK2), ..., Calxnikn)) T
@ Require a triangular Jacobian for faster evaluation.

=> The parameters x depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

no(z0)[zo=| m(z1)[zi=| ... [z = o [ze = ] e(z)
fo(z1) fi(z2) fi(zit1) f—1(zk)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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HIGH ENERGY PHYSICS
——

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

no(z0)[zo=| m(z1)[zi=| ... [z = o [ze = ] e(z)
fo(z1) fi(z2) fi(zit1) f—1(zk)

Initial sample from N(0, 1)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (HEPHY Vienna) ML 4 HEP
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HIGH ENERGY PHYSICS

A chain of bijectors is also a bijector
The full transformation is a chain of these bijectors.

no(z0)[zo=| m(z1)[zi=| ... [z = o [ze = ] e(z)
fo(z1) fi(z2) fi(zit1) f—1(zk)

Initial sample from N(0, 1) After layer 1

e
0 e
2 A

a0 s 4 3 2 a0

After layer 2 After layer 3

After layer 4

After layer 5

https://engineering.papercup.com/posts/normalizing-flows-part-2/
Claudius Krause (HEPHY Vienna) ML 4 HEP
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Affine Transformations

The coupling function (transformation)
@ must be invertible and expressive

@ is chosen to factorize:
F(X:®) = (CL(xtixy), Go(x2ik2), ..., Calxni®n)) T,
where X are the coordinates to be transformed and ¥ the parameters of the

transformation.

historically first: the affine coupling function
C(x;s, t) =exp(s) x+t

where s and t are predicted by a NN.
o It requires x € R.
@ Inverse and Jacobian are trivial.

@ Its transformation powers are limited.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Any monotonic function can be used.

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

of (%)
oxX

of (Z) |~

P det

(%) = 71(Z) |det = 1(F ()

() = const,

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Any monotonic function can be used.

Changing coordinates from Z to X with a map X = f(Z) changes the distribution according to

(%) = 7(@) detag(;) o r®) detaf;)—;(;e)

A more complicated transformation then leads to a more complicated transformed distribution.
Splines act in a finite domain.

—— RQ Spline
B Inverse
e  Knots
B D
= 0 =
S =
1
-B
figures from
0
Durkan et al. -B 0 B -B 0 B
[arXiv:1906.04032] x B
Claudius Krause (HEPHY Vienna) ML 4 HEP
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Piecewise Transformations (Splines)

piecewise linear coupling function: Miiller et al. [arXiv:1808.03856]

pdf cdf

The NN predicts the pdf bin heights Q;.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Piecewise Transformations (Splines)

piecewise linear coupling function: Miiller et al. [arXiv:1808.03856]
b—1
pdf cdf C— 2 Qk - ava ‘— X—(bw—l)w
k=1
IC| 1 Q
-me
The NN predicts the pdf bin heights Q;.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Piecewise Transformations (Splines)
piecewise linear coupling function: Miiller et al. [arXiv:1808.03856]
df cdf b—1
’ C=) Qu+aQy, o= —X_(bw_l)w
k=1
2|y
ox| w

The NN predicts the pdf bin heights Q;.

rational quadratic spline coupling function: Durkan et al. [arXiv:1906.04032]
Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

cdf

ara® + aya + ag o still rather easy

¢= boa | by + by @ more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in a;&b;.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Taming Jacobians: Bipartite Flows (“INNs")

forward:
YA = XA
yB,i = C(xg,iix(xa))

[Kea(x€B) &  rep(x€A)]

= Coordinates are split in 2 sets, transforming each other.

inverse:
XA = YA

xg,i = C(yg,iik(xa))

Jacobian:
aC
%7/4 “T1 9C(xg,i; k(xa))
0 % 5 aXB,,'

XA

XB

(]

RQS(xg; x(xa)

Y permutation '—»

Dinh et al. [arXiv:1410.8516]

Claudius Krause (HEPHY Vienna)

ML 4 HEP



. “ ‘ ‘\I
ausTaaw N2
OAW e — //,‘\é HEPHY

Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Denoising Diffusion Probabilistic Models

q(x¢lx¢-1)
O 0 @g ~@g

by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

a(xt, - xrlx0) = 111 a(xe|xe1). with (xexe_1) = N (xc: v/T— Bexe_1, Be)

and a noise schedule B;.

= now learn inverse: py(x¢_1|xe) = N (xe—1; o (xe, t), 04 (xe, 1))

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Denoising Diffusion Probabilistic Models

q(x¢lx¢-1)
O 0 @g ~@g

Xt 1|Xt

by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

a(xt, - xrlx0) = 111 a(xe|xe1). with (xexe_1) = N (xc: v/T— Bexe_1, Be)

and a noise schadule B;.

= now learn inverse: py(x¢_1|xe) = N (xe—1; o (xe, t), 04 (xe, 1))

q(xe|x0) = N (xt; /1 — Bxo, Bt)

with 1 — B, =TIt_11—B;

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Denoising Diffusion Probabilistic Models

q(x¢lx¢-1)
O 0 @g ~@g

Xt 1|Xt

by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]

a(xt, - xrlx0) = 111 a(xe|xe1). with (xexe_1) = N (xc: v/T— Bexe_1, Be)

and a noise schedule B;.

= now learn inverse: py(x¢_1|xe) = N (xe—1; o (xe, t), 04 (xe, 1))

2 2
Lpppm 271th (1_[752)& ler — €g(xt, t)|

more math and details by Sofia Palacios Schweitzer et al. [arXiv:2305.10475] and Ho et al. [arXiv:2006.11239]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Denoising Diffusion Probabilistic Models Training

t~ULT)

Claudius Krause (HEPHY Vienna)

e~N(0,1) ———

x0 ~ p(Tg) —> 2y =

ML 4 HEP

A

A

4

A

pg——

V1= Bixo + \/ Bie

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]

) DEER
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Denoising Diffusion Probabilistic Models Sampling

TrT NN(O,l) ZTNN(O,l)

w e = ( B Jﬁ?e) o 2~ N(0,1)
t=T-1 1 xz—Lée + 0222
V1I—Ps \/E

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Conditional Flow Matching: Connecting Normalizing Flows and lefu5|on
Models

-

continuous time evolution

“MW;

a5t HEPHY

t
by Sofia Palacios Schweitzer and Ho et al. [arXiv:2006.11239]
. . . 1
Continuous Normalizing Flow: x1=xp+ [gv(x,t)dt & Lx(t) = v(x,t)

= connect data and latent space with ODE instead of discrete bijector

Claudius Krause (HEPHY Vienna) ML 4 HEP



Conditional Flow Matching Setup

Ordinary Differential Equation
I x(t) = v(x(t),t), with x(t =0) = xg

Continuity Equation
2p(x,t) + Vi (p(x, t)v(x, 1)) =0

Diffusion Process

ata\X £ 0

Claudius Krause (HEPHY Vienna) ML 4 HEP

p(y(to))

&

o

ply(t1))

{H\\l/
//A\* HEPHY
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Huang/Yeh [arXiv:2012.04228]

SN SN
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Conditional Flow Matching Training

naive regression of v(x, t):

Lepm = <(ve(x, t) —v(x, t))2>tNu[0'1] but: v(x,t) and p(x, t) are not tractable!
x~p(x,t)

Solution:

v(x, t|xg) and p(x, t|xg) are!

Lerm = {(a(x(tho). 1) = v(x(eh0). £5))”)wsio

t~U([0,1]) l

Xo ~ Paata(X0)s € ~ N(0, 1) —> x(tlxg) = (1~ £)xo + te —»
\—L‘, = (vg—(e—xu))2 o

Sofia Palacios Schweitzer et al. [arXiv:2305.10475]
Claudius Krause (HEPHY Vienna) ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Applications of Generative Models
Event Generation Detector Simulation
p(momenta, angles|process) p(particle shower|initial condition)
\\ Ir >
\ / "
Hadronization Detectors Events

b

Machine Learning and LHC Event Generation] A. Butter et al. [2203.07460], R. Winterhalder

~

Inverse PrOblemS p(parameters|data)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Event Generation uses Importance Sampling.

/\ I = [} F(R) d%

flat sampling:
inefficient.

I = <f(;)>x~uniform

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Event Generation uses Importance Sampling.

\/\ I = [} F(R) d%
v

ﬂa.\t sa.m.pling: importance sam-
inefficient. pling: find g close to f

I = {£(X)) x~uniform = <;g§> (x)
x~g(x

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Event Generation uses Importance Sampling.

N N
¥

flat sampling:
inefficient.

I = <f()?)>x~uniform

importance sam-
pling: find g close to f

'= (50 s

multichannel: one
map per channel

| = Z <o¢,-(x)

i

f(X)
8i ()_6) >x~g,~(x)

Claudius Krause (HEPHY Vienna)

ML 4 HEP
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Neural Importance Sampling — Results for qg — v/Z/Z' — e'e

/

T 1073
N
Learned dis- £ .
. . = 107
tribution §
matches truth.
107
1
3

i i i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]
Me+e— [GeV]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Neural Importance Sampling — Results for qg — v/Z/Z' — e'e
/ g107°
N
Learned dis- £ . Peaks are learned
tribution g 10 by different
matches truth. channels.
107°
1
S
0
8 — 1.251
I
.% ©1.00
=50.75
i i i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]
Me+e— [GeV]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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s HEPHY

HIGH ENERGY PHYSICS

/ g 107
N
Learned dis- £ . Peaks are learned
tribution g 10 by different

channels.

N

Channel weights
are learned by
the network

matches truth.

_
9
el

i i i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]

Me+e— [GeV]

ML 4 HEP

Claudius Krause (HEPHY Vienna)
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/ T 1073
N
Learned dis- £ . Peaks are learned
tribution g 10 by different
channels.

matches truth.

—

Re-uses sam-
ples to make
training faster.

_
9
el

N

Channel weights
are learned by
the network

i i i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]

Me+e— [GeV]

ML 4 HEP

Claudius Krause (HEPHY Vienna)
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HIGH ENERGY PHYSICS

Applications of Generative Models
Event Generation Detector Simulation
p(momenta, angles|process) p(particle shower|initial condition)
\\ I’ >
\ l ”
Hadronization Detectors.

<

Machine Learning and LHC Event Generation] A. Butter et al. [2203.07460], R. Winterhalder

~

Inverse PrOblemS p(parameters|data)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Detector simulation is computationally expensive.

103

100

0
Clg) 0 g 0w

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Detector simulation is computationally expensive.

realism

GEANT4

A SIMULATION TOOLKIT

? <—| Generative Al |—> ?

?

DELPHES

fast simulation

Claudius Krause (HEPHY Vienna)

ML 4 HEP

speed
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Generative Models are fast and faithful surrogates.

0t :';::)T\Zx -
B mlw/ \‘;% =
107 . INN
_ Batch size 1-photon 1-pion 2-positron
e e et
assans Rl T ] 1 24794049 24.76+0.35 50.90 +0.37
T bl ) B GPU|100 0.385+0.002 0.406+0.003  1.900 %0.026
~vs2 10000 0.162+0.002 0.191+0.006 exceeding memory
1 17.48+0.09 18.88+0.33 117.5+1.8
CPU | 100 0.827 £0.028 1.004 +0.047 14.26+0.18
10000 0.510+0.008 0.719+0.016 15.24+1.36
Generation time per shower in ms.

i 102 0" 1%
Ey [MeV] Ex [MeV]

Ernst, CK et al. [2312.09290]

CaloDiffusion [2308.03876] Normalizing-Flow-based models are very promising! CaloDREAM [2405.09629]
DDPM and CFM models have even better quality, but are slower.

Claudius Krause (HEPHY Vienna) ML 4 HEP



. 1) QA
OAW S HEpHY

7N DED

HIGH ENERGY PHYSICS

Applications of Generative Models
Event Generation Detector Simulation
p(momenta, angles|process) p(particle shower|initial condition)

N /7‘ :
\ Hadronization Detectors Events

b

Machine Learning and LHC Event Generation] A. Butter et al. [2203.07460], R. Winterhalder

V¥
Inverse Problems p(parameters|data)

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Inverse Problems: learn p(parameters|data)

Training

Sherpa
jets

QCD

model

h

2
) P(z)

glmsh

Examples:
CP-observables:
Neutrino momenta:

A DGM can learn p(parameters|data) directly.

Bieringer et al. [2012.09873, SciPost]

Ackerschott et al. [arXiv:2308.00027]

Inference

P(ml{z}) (z:h) 2~ P(2)

[arXiv:2207.00664, 2307.02405]

J

Or be used for unfolding detector effects:
P(Xpart |Xreco)

[2212.08674, 2310.17037, 2404.18807]

Claudius Krause (HEPHY Vienna)
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models
> Normalizing Flows
» Denoising Diffusion Probabilistic Models (DDPMs)
» Conditional Flow Matching (CFM)
» Applications
> How to evaluate Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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How to evaluate generative models?

In text / image / video generation: "by eye”.
= Our brains are incredible good at this task, but it doesn't scale.

imagined with Meta Al.

In high-energy physics: need to find something better!
= We want to correctly cover p(x) of the entire phase space.

@ Can look at histograms of derived features / observables.
= To quantify, we use the separation power of high-level feature histograms:

1 \pins (h1i—hpi)?
S(h h2) = 3 %% 5T

But: this is just a 1-dim projection!

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024
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A Classifier provides the “ultimate metric”.

According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish two samples.
@ A powerful classifier trained to distinguish the samples should therefore learn (ometning

— _Pdata
W = ——.
Pmodel

o If this classifier is confused, we conclude = pyata(X) = Pmodel (X)

monotonically related to)

= This captures the full phase space incl. correlations. CK/D. Shih [2106.05285, PRD]
TPR
@ Now, the AUC provides a single number ROC AUC

to compare different models.

But: are AUCs of different models really comparable?

FPR

Claudius Krause (HEPHY Vienna) ML 4 HEP October 2 & 3, 2024 53/73
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A Classifier tells us much more about the model.

Failure modes of the model can now be seen in the w = pﬂﬂja—l histogram:
moae!

10-! Z+2j

Data manifold over- /‘ﬂ T e Data manifold not pop-
populated by model: e ./\ ulated by model:

= mismodeled feature = missed feature

102 “

[
102 10" 10%

w(x) R. Das, CK, et al. [2305.16774, SciPost]
Cluster plots show where events lie in phase space: figures by B. Schmidthaler / M. Rosendorf
small weights: ° * &e ™ ™ large weights: ° 7 Ze ™ 7

Claudius Krause (HEPHY Vienna) ML 4 HEP
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How to decide which model is closest to the reference:
the Multiclass Classifier

A multi-class classifier:
Train on submission 1 vs. submission 2 vs. ... vs. submission n
and evaluate the log posterior:

L = (log (p(Xeclass i %taken from j))) Jj € {submission k, GEANT4}
© As metric: evaluate with GEANT4 Lim et al. [2211.11765, MNRAS]

As cross-check: validate with all submissions j
consistency check, dataset 1 - photons

CaloDiffusion { 1e70 2510 3.43(2) -4.26(4) -5.48(5) -3.03(2) -3.16(2) PEREIEH 7.54(18) -7.18(20) -5.34(13) -3.23(3) -3
CaloINN { 248 2020 -3.22(3) -3.95(4) -5.08(5) -2.51(1) -2.62(1) EEESBER 71.37(18) -7.04(19) -5.10(14) -3.61(3) -

Calo-vQ

CaloScore | 29201 35 20000 2512) 3342) 3300) -3330) COEMY: 8.06(20) -5.48015) -4.92(5) -4

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)
@ Regression and Classification

© Deep Generative Models

@ Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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What is Anomaly Detection?
We distinguish different types of Anomaly Detection:

Out-of-Distribution Anomaly Detection Group Anomalies

underdensity

new event overdensity \

R s 3

Real-world applications are usually about out-of-distribution events:
o Finance (credit card fraud, malicious transactions, ...)

@ IT / Network Security
@ Medical imaging

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Anomaly Detection: Out Of Distribution Data
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Train an AutoEncoder on “normal” data:

-

Farina, Nakai, Shih [1808.08992 PRD]

OOD samples will then be harder to reconstruct:

QCD top New Physic:
i 4 »
L]
input
§
b
¥ L
output
& (&)
" -
difference

Dillon et al. [2301.04660]

Additional techniques like self-supervision and contrastive learning increase robustness.

Claudius Krause (HEPHY Vienna)

ML 4 HEP
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Anomaly Detection in Overdensities: Bump Hunts

Assumptions
@ signal is localized in m

@ background in m is smooth
o  additional discriminating features x

Select events with

Psignal
Pbackground

. Pdata

Pbackground

J

Claudius Krause (HEPHY Vienna)

ML 4 HEP

SB SR SB m

@ Scan Signal Region (SR) across m

@ Perform background fit and obtain
p-value for bump.




..
AUSTRIAN

INSTITUTE OF
HIGH ENERGY PHYSICS

W
—A
7/4'\\? HEPHY

The LHC-Olympics looked at di-jet Resonances.
LHC Olympics R&D dataset:

== Background

10°
. Signal
@ 1,000,000 QCD dijet events . ———
100 Sidebands (SB)

@ 1,000 signal events W' — X(— qq)Y(— qq) w

@ myy = 3.5TeV, nnnnnnnn

mx = 500GeV, my =100GeV o : rared

@ In SR, 3.3TeV < my; < 3.7TeV:
> 121,352 bg events
> 772 sg events

o S/VB=22

LHCO: G. Kasieczka et al. [2101.08320]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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We can get the likelihood ratio using ML: Classifiers.

According to the Neyman-Pearson Lemma we have:

@ The likelihood ratio is the most powerful test statistic to distinguish two samples.

@ A powerful classifier trained to distinguish the samples should therefore learn

(something monotonically related to) thIS

Mixed Sample 1 Mixed Sample 2
[6161616)6) @e0e® o Classification without Labels (CWoLa)
OOBCBG | | @OO®®G learns from mixed samples.

OO0 | | ©00e® , " :
OB | | ©eO®G® @ An optimal classifier is also optimal for
@GOG | | GCOEG®G distinguishing S from B.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP] “Coala Hunting” via midjourney.com => _
unti vi idjourney.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Simulation-based approaches are model-dependent.

Simulation-based approaches:

o fully supervised:
train classifier on simulated signal and background
> depends on quality of simulation
> high signal model dependence
> provides upper limit on all approaches

o idealized anomaly detector:
train classifier on data and simulated background
> depends on quality of simulation
> still background model dependent
> provides upper limit on data-driven anomaly detection

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data-driven approaches are background model-independent.

Anomaly Detection with Density Estimation (ANODE):

= Background
Signal

e train “outer” density estimator g onal Region (5R)

Pdata(x|myy € SB) Sidebands (SB)
@ train “inner” density estimator

Pdata (X| myy € SR)

@ compute
Pinner(XImJJ)
P o) for my; € SR

@ robust against correlations, but harder learning task.
B. Nachman, D. Shih, [2001.04990, PRD]

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Anomaly Detection in Overdensities: Bump Hunts

@ train “outer” density estimator
Pdata(x|my; € SB)

o sample “artificial” events from
Pouter(X|mJJ € SR)

@ can also oversample

Classifying Anomalies THrough Outer Density Estimation (CATHODE):

@ train a classifier on these samples vs data

mm Background
Signal

Signal Region (SR)

Sidebands (SB)

A. Hallin, CK et al. [2109.00546, PRD]

Claudius Krause (HEPHY Vienna)
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Anomaly Detection in Overdensities: Bump Hunts

Significance Improvement Characteristic = TPR/+FPR
20.0
—— Supervised
17755 —— lIdealized AD
o —— CATHODE
G 15.0 CWola
§ —— ANODE
3 1251 M T NGO e random
Q
E 10.0 A
g
c
S 737
E‘é
2 5.0 1
2]
2.51
0.0 L Lo e e .
0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate) A. Hallin, CK et al. [2109'0054& PRD]
= These strategies are now being explored in ATLAS and CMS.
ATLAS [2005.02983, PRL], CMS [CMS-PAS-EX0-22-026]

Claudius Krause (HEPHY Vienna) ML 4 HEP



.
AUSTRIAN

OA ACKDEMY oF
s

A

= HEPHY

INSTITUTE OF
HIGH ENERGY PHYSICS

Anomaly Detection in deployment: recent CMS results

CMS Prefimic 1381b”" (13 Te\ > CMS Preiimine 138 1" (13 TeV) . CMS Preiiminary 138 1b-' (13 TeV)
>
K] vaeon 4 Data & | cwolatuning ASgnalRegions 4 Data & | TeonTainASgaiRegons < Data
8" — Blg.it 8. — Bigfit | 8] — Bikg. fit
N - aTeVXavvoadq | 2 2 \
2 - 5TeVWoBt1obZt ] @ \\ @ \
H £ ]
¢ - \\\_ “ \\\
10 107 \ 101 \
ol
{2 T e Py
T w— g S Sttt 0
m; (GeV) m; (GeV) my (GeV)
CMS Profiminar 138 fo°! (13 ToV) CMS Profimine 138 ' (13 ToV) S CMS Preiiminary 138171 (13 ToV)
> >
& | caTHODE: A Signal Regions -+ Data & | camHopEb ASgraRegons |- Data & | cenetcouakASgnaiRegons 4 Data
8 — Bkafit { 8PN — Bkg.ft{ 8 — Bkg. fit
g [ s | 5
& @ &

)
"t

T

M

7

i

o

Claudius Krause (HEPHY Vienna)
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Machine Learning for Particle Physics

This week’s plan:

@ Introduction (fits, optimization, and NNs)

@ Regression and Classification

© Deep Generative Models

© Anomaly Detection and Data-Driven Methods

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data-driven methods |: Experimental Background Est|mat|on

uM#
N |

HEPHY

q q
el el
q/i\'{

ATLAS [arXiv:2301.03212]

Nonresonant Higgs pair production: ggF/VBF — HH — bbbb
Upper limits on anomalous couplings.

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data-driven methods |: Experimental Background Estimation

2b

T T
ATLAS

VE=13TeV, 126 0™
gF selection, Xy > 1.5

(A2 €) /satug

mu2 [GeV]

i =) L | | I
60 80 100 120 140 160 180 200

60 80 120 140 160 180 200

mu1 [GeV] mu1 [GeV]
Nicole Hartman [ATLAS Thesis Award Presentation and arXiv:2301.03212]
= Reweighting with a classifier: 7.5% extrapolation uncertainty,

= Interpolate with Normalizing Flow: no extrapolation uncertainty,

ATLAS[arXiv:2301.03212]

Nicole Hartman, PhD Thesis

Claudius Krause (HEPHY Vienna) ML 4 HEP
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Data-driven methods Il: the DM density in the Milky Way from Gaia Data.

[www.esa.int]

@ ESA Mission launched in 2013

@ measures: position, proper motion, color, and magnitude of stars

@ some even have radial velocities and parallax (distance) available

@ DR3 has 1.8 - 109 stars, 1.4 - 109 of them have 6D data, DR2 has 1.7(1.3) - 10°.

Claudius Krause (HEPHY Vienna) ML 4 HEP


https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/06/gaia_observes_the_milky_way/24305944-1-eng-GB/Gaia_observes_the_Milky_Way.jpg

—~ AUSTRIAN ‘fﬂm“‘hl&
NI ————— LM

INSTITUTE OF
HIGH ENERGY PHYSICS

Data-driven methods Il: the DM density in the Milky Way from Gaia Data.

0 Gaia DR3

= (kpe)

= (kpo)

7
£
1070

1071

1072

= (kpe)

1073

(i) (kpe

107+

Stellar Number Density Lim et al. [arXiv:2305.13358]

Claudius Krause (HEPHY Vienna)
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Data-driven methods Il: the DM density in the

Dark Matter Density

Claudius Krause (HEPHY Vienna)
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Milky Way from Gaia Data.

q — Total

W 6 =-0209rads [ .
Si—Sta:s&Gas ® & =0
&= Avg. Dark Matter A 6 =0209

=

a

2

44

o

=

R

L

S

2,]

<

°

w
L

o

pon (1072 Mg /pc?)
M

T T
3.0 -25 -20 -15 -10 05

0.0 0.5
s (kpe)

ML 4 HEP

p (GeV/em®)

Lim et al. [arXiv:2305.13358]
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Ressources again

[ If you have questions, please ask! )

This lecture is based on:
= "“Modern Machine Learning for LHC Physicists",
552022 lecture notes of Heidelberg University, arXiv: 2211.01421

Further Reading:
o Summary of HEP-ML papers: "HEPML - Living Review”
https://iml-wg.github.io/HEPML-LivingReview/
o Tipps for efficient training of NNs:
https://karpathy.github.i0/2019/04/25/recipe/

@ About good coding practices in science: https://goodresearch.dev/

Claudius Krause (HEPHY Vienna) ML 4 HEP


https://arxiv.org/abs/2211.01421
https://iml-wg.github.io/HEPML-LivingReview/
https://karpathy.github.io/2019/04/25/recipe/
https://goodresearch.dev/

