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. uantum Computers
Will Be Incredibly Useful For

Computers don't exist in a vacuum. They serve to solve
problems, and the type of problems they can solve are
influenced by their hardware. Graphics processors are
specialized for rendering images; artificial intelligence
processors for Al; and quantum computers designed for...
what? While the power of quantum computing is impressive,
it does not mean that existing ...
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"Nature is quantum [...]
so if you want to
simulate if, you need a
quantum computer”

- Richard Feynman
(1982)

Easily said ... so how do we do that?

Beginning of a scientific journey that accelerated
in recent years tremendously....
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Pre-digital age computing: e
are pushed
against the
e express values in combinations it : Five-unit
reac Momyelt Each bead inthe

Total value the tens (10-99) and so on.
central bar
143 toright. :
and positions of beads D W tpsscton
represents the
numerical value
five, and is
i l counted by
pushing it down.

The beads that
represent the /
e manipulate beads mechanically

Individual
numbgrs 5
e convert position and combination mivwo F! et
. in the hundreds Each bead in the
of beads back into value f;“ezdﬁd Efi ot et
(5+2)x100=700. 2::1:;:?lvalue
counted by
pushing it up.
WQ
Digital age computing:
convert into define algebraic obtain result in
different procedure on new new convert back
representation representation representation

| L“’ © — 10000 — 16
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6"'10 —> 0110 —_ o R
+ 1010 )
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Quantum Age computing

(Quantum) operations on qubits

Initialisation
* results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically
evaluate how likely each outcome is (by calculating and measuring several times).
Since we work only with probabilities, we measure only probabilities
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How can these quantum principles help fo
Improve computations?

classical

quantum (superposition)
system is in one state out of 16

can be in all states at same time

e Configuration space here 16=2"4 states.

e Computations can be performed simultaneously on the whole configuration
space. -> can be much faster than classically

e A measurement of the quantum system after the computations are performed results in
the observation of one of these configurations, with a probability that corresponds to
the computational processes
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Quantum Gate

Interference of Waves

SOou

Wall Screen

quantum gate and multi slit experiment are conceptually idenftical

IT’s a secret computation...

While operating one cannot see how the
gate works. Only at the end one can
measure the outcome
(box is closed during operations)
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Galton Board as analogy for
Quantum Computer




The quantum mechanical principles on which the algorithms
have to rely to have a chance for a quantum advantage are

Superposition
Entanglement

Tunneling

Heisenberg
principle

Quantisation

Configuration

Required to go beyond classical computing space sampling
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What are the potential advantages of Quantum Devices?

® Quantum Simulation: Simulating genuine quantum systems, e.g. molecules
Medical applications, Chemistry applications, HEP etc

® Quantum
Cryptography and Encryption and decryption, e.g. emails, RSA
Security:

e Quantum Information  Transformation, storage and fransmission of
information, e.g. databases, teleportation,
networks etc

Science:

® Quantum Sensing and High-precision measurements, Quantum
Quantum Metrology: Imaging, Quantum Navigation/Timing

® Quanfum Machine Learning Learning and optimisation based
and Optimisation: on quanfum algorithms

¢ Speed and efficiency: Simple classical tasks performed faster
or with less electricity consumption etc
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Private and Public Sector is placing big bets on Quantum Computing

Quantum Computing
Use Cases Exhibit II: Ten-yeaénl;c_JLrJescee;sésecg)]fm %Lrjlfta;t(ugMﬁii%wsp)uting Spending by

7,000
mEnergy
Quangum Light Harvesting 6,000
Chemistry Transport é = Transportation
Climate 2 Communication Si #]?j?;:?n 5,000 mHealthcare
nergy
CO, : »
N, LNG Materials Room Temperature S/C E 4,000 = Gen. business management
=
Pl Chemistry Piaioe « 3,000 =Banking and financial services
; Differential
Biomolecules Equations 2,000 = Pharmaceuticals and materials
. design
ien .
Biology SC ence Encryption 1,000 | i IT and advanced search
=
Personalized Math — i
= Search —
Medicine linear Alinbes R ) — — = . = Defense and aerospace
Pattern Computing By Toeslitiin 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
Bioformatics Matching Code-Breaking © CIR 2018 =R&D
Singulari
Machi_ne el
Learning Optimization Quantum
Finance ) Algorithms . . . .
Robotics ﬁ ﬁ l
prtein Fokang ~ 7 | Significant financial investment
Planning
Constrint ey expected across many sectors
Quantum Autonomous Vehicles

Machine Learning

In US, already now higher financial

gartner.com/SmarterWithGartner investment from private than public sector
S DR X e Gartner.

—p All national and infernational labs have QC programmes
| (Fermilab, BNL, LBNL, CERN, ...)
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Basic motivation for Quantum Computing

"Can we take the quantum mechanical properties of
microscopic objects and scale them up to larger quantum
systems while harnessing their quantum prowess?”

e-

INFORMATION L
Classical Quantum

- Intrinsic Randomness
- Uncertainty Principle
- Entanglement

For some specialised task quantum supremacy has been shown

Disclaimer: nobody today thinks that quantum computers
will universally replace classical computers
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Technical challenges of a quantum computer

® Many quantum paradigms require system to be perfectly isolated (shielded
from outside) to maintain coherence - for as long as the algorithm takes

Achieving perfection is hard,

but remaining perfect...  \e’re trying to create
that’s impossible. things TTI:e;/T sre stable...

¥

60
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The road to Quantum Advantage

Unknown Problems Chemistry

100,000+ qubits 100 - 200 qubits
Quantum
Material Science : Optimization
100s - 1,000s qubits co m pUt Ing 100s - 1,000s qubits
Key Potential
Applications
Machine Learning

100s - 1,000s qubits

gartner.com/SmarterWithGartner

Source: “Nature,” Wikipedia
© 2019 Gartner, Inc. All rights reserved

~— IBM 400 qubits in 2022

~— IBM 1000 qubits in 2023
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1
v

m§ Quantum Infortnation Theory —
£3 I : :
E ‘ Practical
ag Quantum Gate Quantum Computer Testing Beds Prototypef:"f 3;:3?;21 CORpU Q:'Jaantﬁfn
§ ) Operatien Algorithms, Scelabliity rge-Scale Architecture Computers
.6 v L
= :

Quantum Simulators tor Specific Purposes

Quantum Crypto Network >

2 Quantum Secure Network >
-% 2 . 4 Universal
- E’ ! Quantum Repeater > ; Quantum
¥ - ' e e Information
& ) : ' el Network
o= : Quantum Coding > :
SRS : : :
5 s s :
: F u' Standards with EApplication of
Trapped ion/ EOP““' Lattice @ o tra-Precision Ultra-Pfedise Frequency Standalb Quantum
| : New
Basic Techn'plogles of Quantum MetroloE> Application of Quantum Metrology> gﬁg?r;ﬂz?gy
| Life
Quantpm Lithography & New Technolpgies for Ultra-Sensitive Measurements
| Single Photoni Generation ? f
, ; On-Demand Generation and Control of Quantum Entanglements = High
| single Photoh Detection —> 1 5 Performance

: | ' Large-scale Quantum
: | Quantum Media Conversion > Quantum Memcﬂ_>' Information

v ' Devices
| Fundamental Technology for Qubit and Q-gate >| Multi-Qubit Technology —

2010 2020 2030 2040

ﬂp The Japan Society of Applied Physics

Device and

2
o
c
i -
(8]
QL
-—
(T
-~
c
o5}
=
©
©
c
p }
(VI

P3H Summer School Lecture 15 Michael Spannowsky October 2024



Figure 2. Quantum computing prototypes announced on vendor roadmaps

2022 2023-2025 2025-2030 2030-2040+
2023 2024 2025 2025-2030 2029
Super-
conducting 1,121 qubits 50 qubits 1,024 qubits 1,000 qubits 1 million qubit
IBM Quantum IQM Origin Quantum Fujitsu & RIKEN error-correct
Condor QC Google
2023 2025-2030 2029
Electron . . -
spin 10 qubits 100 qubits 100 logical qubits
SQC SQC Quantum Motion
2023 2025 2026 2023-2027 2028 2027-2030
Tra_\pped 29 algorithm 64 algorithm 256 algorithm  Model H2-H4 1024 algorithm Model H5
won qubits lonQ qubits lonQ qubits lonQ Honeywell qubits lonQ  lon-trap tiling
Honeywell
2022 2023 2024 2025
Cold ‘ I I I
atom 100-200 qubit 1,000 qubit 1,024 qubits 1,000 qubits
Pasqal Pasqal QuEra ColdQuanta
Simulator Simulator
2022 2024 2026 2027-2030
Photon A A A A
6 qubit Computer 3 qubit computer 100+ qubit computer 1 million qubit computer
Quandela ORCA ORCA PsiQuantum
Source: Arthur D. Little, Olivier Ezratty
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Analog vs Digital Quantum Computing

Analog and digital quantum computing are two different approaches to quantum
computing, each with its own advantages and disadvantages.

Analog Quantum Computing (AQC):

e Based on the principle of quantum evolution of
a quantum system, e.g. quantum annealing

® The system uses its intrinsic quantum dynamics,
following the Schroedinger Equation

e Ground state represents the solution to the
problem at hand

e Not always universal, but often well-suited
for optimisation problems

Example: D-Wave Systems. The D-Wave quantum
annealer uses a network of qubits that can
collectively tunnel through the solution space to
find the global minimum of a given function.

P3H Summer School Lecture |7

Digital Quantum Computing (DQC):

e Digital quantum computing, also known
as gate-based quantum computing

e Uses quantum logic gates o perform
operations on qubits

e Considered to be more versatile than
analog computing.

e However, might require higher level of
control over the quantum system, which
can be challenging

Example: IBM's and Google’s quantum
computers use the gate-based model of
quantum computing.

Michael Spannowsky October 2024



Popular Quantum Computing paradigms

Quantum computing has long and distinguished history but is only now becoming practicable.

Discrete Gate

Continuous Variable

Quantum Annealer

Type
P (DG) (CV) (QA)
. Universal .

Property Unllversal (any quantum ) Not universal —
algorithm can be expressed) GBS non-Universal certain quantum systems
e most algorithms and tech uncountable Hilbert continuous time quantum

J support (configuration) space process
IBM - Qiskit DWave - LEAP
? . Xan :
How" ~ 100 Qubits zlnziell ~7000 Qubits
What"?
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Vector Spaces

Normed Spaces

Hilbert Spaces

Quantum Mechanics Basics

P3H Summer School

Lecture

20

Quantum uncertainty

uantum tunneli
Wave/particle duality Q MIERInE

Quantum Physics

Quantum entanglement

De-coherence/Coherence Superpositions
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Phenomenological observations:

® Randomness of measurement outcomes:
Repeated measurements of the same physical quantity (observable) A
in the same physical conditions (state) produce different results.

® Post-measurement state: Let ¢ be the physical state of the
considered quantum system. If we perform a measurement process on
the system to measure the observable A and the obtained outcome is

a € R then the state of the system, after the measurement, is ¢q.

® Incompatible observables: There are pairs of observables that cannot
be simultaneously measured by an experiment.
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Mathematical description of QM for QC

® Define and work in Hilbert space —>  Superposition principle
— Distance and similarity measure

—> composition and transformation
of objects

® Physical states are elements of Hilbert space A

e States are manipulated through linear /\/

operators A(ud + Byp) = oAb + BAy

e Physical quantities are expressed through self-
adjoint operators, that have real eigenvalues

MOlY) = DIAY) = ADlY) = A*lY)

e The eigenvalues of unitary operator are complex numbers with unit modulus,
also called phases: for ¢ eigenvector of unitary operator U with eigenvalue u,

(lgy = (UplUyp) = w*udeley = lul2¢pley, then |ul2 =1, so p=el® with ¢ € R

® Spectral Theorem: If A € B(H) is normal, that is, AAT = ATA, if and only if
there exists an orthonormal basis of H made by eigenvectors of A.

— any self-adjoint operator is diagonalisable and admits a spectral decomposition

— Functional calculus for bounded (and unbounded) operators
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e Composite quantum systems:

Let HA and HB be Hilbert spaces and ¢ € HaA, v € HB.

The tensor product of ¢ and o is defined by: ¥ ® ¢(z,y) := (Y|z)aloly) s

.TEHA,yEHB

The tensor product of Hilbert spaces H, @ Hp consists of all such tensor products
equipped with the inner product: () ® gy ® o) = (Y|¢)a- (el¥)s ¢ € Ha v, € Hp

The tensor product of operators A € B(HA) and B € B(HB) is: (A® B)(v ® p) := Ay ® By

If dim HA = n and dim HB = m then dim(HA ®HB) = n-m.

For example:
o for [¢) =al0)+5I1) and |¢) =710) +4|1) we get

) ® |¢) = ar|0) @ |0) + ad]0) @ |1) + (1) @ [0) + Bd[1) @ [1)

e for operators Aly) =aly) and B|¢) = b[¢) we have:
(A® B)([¢) ®¢)) = (Al)) @ (Bl¢)) = aly) ® blgp) = ab(|y) ® |¢))

P3H Summer School Lecture 23 Michael Spannowsky
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e Some states cannot be written as a direct ftensor product, e.qg.
Wias=W)a®y)p #5040+ 50all)s  Bell states
So, using the language of states and their tensor products is not be sufficient.
WIX> — p = pr‘lVX><IVX|
Density matrix: i

Consider a quantum system with state space cd. A density matrix, commonly denoted as
o , Is a linear operator p € L (Cd , cd ) such that:

l.o 20, and

2. tr(p) = 1.

The density matrix is a representation of a systems statistical state

® Concepts pure vs mixed states, coherent vs incoherent superposition

¢ Entanglement

The density operator p € S(HA ® HB ) is said to be separable if it can be written as a
statistical mixture of product states: A B
p=> Xip ®p”

(

where 4, > 0 and Z A; = 1. Otherwise it is said to be entangled.

l

P3H Summer School Lecture 24 Michael Spannowsky October 2024



1
Example: W) = 75(00) + 1)) Bell state

Assume the Bell state could be written info product of two states

V) = la) @ [b) = (a]0) + 5]1)) ® (7]0) + 6[1)) = a|00) + ad|01) + B~(10) + Bo[11)

1
Condition for Bell state: «d|01) + 57]|10) =0 and av|00) = 8d|11) = 7

/ / both conditions cant hold

a0 =0 and pBy=0

doesnt work Bell state cant be written as product
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Let’s reconsider the phenomenological evidence list:

Randomness of measurement outcomes:
The possible experimental values of the observable A are the element of its
spectrum o A).

Given a pure state |{) € H, the probability of measuring the value a € o(A) is:

Plb(a) — <w‘Pa¢>

where {Pa}aco(A) is the spectral measure or projection value measure (PVM) of A. If

we consider repeated measurements of the observable A in the same physical
conditions represented by the state |}), the expectation value of A on the state |¢) is
the mean of the outcomes:

(A)y = > aPy(a) = (Y| A)

aco(A)
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Post-measurement state: Let |[¢) € H be the state of the considered quantum system.
If we perform a measurement process of A with outcome a € o(A), then the state of
the system, after the measurement, is:

) = — 2

V(| Pa)

In the presented mathematical formulation of quantum mechanics the
measurement process of the observable A is completely described by the PVM
{Patacs(A) which determines the probability distribution of the outcomes and the

post-measurement state.

Compatible and incompatible observables: A and B are compatible when they commute:
A, B] == AB - BA =0

in this case: PaAPpB = PLBPA va € o(A) and vb € oB), so the following probability is
well-defined:

Py(A =aAB=0b) = |PPFy) = (Y|PPPIY)
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Rotation about the Bloch Sphere and state parametrisation

0)

[0)

[ 1) Prob(11)) = (ei¢sin§)2
Measure 10) Prob( 10)) = (cos g )

1)

(SRS

COS(2 —e' SlIl(

)
’4’ s1n(§) e+ cog

Apply Unitary rotation Uz |0): Us®.4.0) =

/N

)
3) i

Extending this to a system of N qubits forms a 2"-dimensional Hilbert Space
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Quantum dynamics

The time evolution of an isolated quantum system is mathematically described by a
one-parameter group of unitary operators {Ut+}tcR defined by:

it it
U = E e Py, = e 't
A€o (H)

where N is the reduced Planck constant, H is the Hamiltonian operator which rep-
resents the observable total energy of the considered system and {Ph}hes(H) is the

spectral measure of H.

If the state at time t = 0 is |V0) € H then the state at time t > O is:

) = Ultbo) = e~ 5% [ahy)

Taking the time derivative obtains the Schroedinger equation:

L d

Zh%WQ = H|ir)
In case of a time-dependent Hamiltonian, H must be replaced by a one-parameter family of
self-adjoint operators {H(1);tcR and the Schroedinger equation assumes the form:

L d
ihse L) = M) o)
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Hamiltonian simulation

Recall Schroedinger Equation and fime evolution equation

A oU . A |
Y0 = 001yO) ~ =0 =~ i - O =

¥ . AL : |'P(0))
It H = H' (Hermitian) then U(?) is unitary

. . . . —th
tHt ,iHt _ 1 and e iHt _ (elHt)T

€ €

e

|P(5)

| . (—iHtY
e—th — Z ( )

Pl

[2111.00627]
Pauli Operators [2301.00560]

| ¥(0))

Tensor products of Pauli operators {I, X, Y, Z} form a basis for the vector

space of 2°n x 2°n complex matrices, which are used to represent

quantum states and operators in a system of n qubits.

Thus, our hermitian matrix H can be decomposed into Pauli operators
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Trotterisation

For commuting self-adjoint operators [S,7T] =0 we find

e’tTe = eele, ¢ € D(S)N D(T)

However, if S and T do not commute this doesnt hold.
Surprisingly the Trotter Product Formula comes fo the rescue:

. _itg _atp\ T i
s-lim (6 ane znT) — e zt(S—{—T)‘
n— 00

Consequently

N N N
A+B o (LAIN B/N\N A B _ A B AB|" A+ B
e (e e ) [(I+N)(I+N)] {I—I—N—FN-F 5 I+ N

—> If N too large causes numerical instabilities, but must be
sufficiently large

—> Trotterization error, important error for quantum algorithms
(Hamiltonian simulation, time evolution etc)
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Trotterization tells us the error we make when writing H as
a sum of H,

H=H, + H,+ H; + --- + Hy for U(H,t) = e Ht/h

Thus we implement an approximated fime evolution where the
H; are compositions of Pauli matrices

U(H,t,n) H He—szt/n H = ) H,
k

j=1

Each piece remains unitary, and H; is hermitian

H = H, + Hy + --- + Hy

— U(H) [ U(Hy) [— -« —] U(Hy) [ —

Task is to convert each piece into gate operations
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Vector space for
Quantum system

Quantum computer
vector space

|'¥(0))

e—th

| P (2))

Trotter-Suzuki
approximation

Trotterization error needs to be assessed, e.g. by reducing time steps
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From QM to QFT

e Extend QM to systems with variable particle numbers (quantum many-body problems)

e Promote classical fields to operator-valued functions, acting on states in Fock space

- 7= P
e Second Quantisation Programme —

. . A A . t ~
e Time Evolution Operator: W(t)) =Ul(t,to)|¥(tg)), Ult,tg) =T exp <_1/ H(t’)dt’>

SN

perturbative approach non-perturbative approach

e.g. scatting in weak coupling regime e.g. Real-fime time evolution suitable
for large couplings

= Interaction picture (split Hamiltonian
into free and interaction H)

= define Dyson series: perturbative
expansion, suitable if coupling is small

= Wick confractions, Feynman diagrams

= S-Matrix, LSZ theorem

= One usually works in the Schroedinger
picture (states are time-dependent and
operators are time-independent (unless
they are explicitly time-dependent))

= Latticisation, Kogut-Susskind programme
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Why Hamiltonian simulation? — The infamous sign problem

e Sign problem - profound challenge for simulation of field theories

e Can arise in presence of chemical
potential, fopological terms, multi-
particle dynamics, ...

e Example chemical potential pypy y

@
~
b
-~
©
L.
b
Q.
5
—

7 = J@lpgw@A e Sy Al (partition function)

%\g Hadrons ¢

1/T
1
S = ‘ dTJd3x ’1/7(}/”Dﬂ + m)y + ZF A+ iy y

. iz,
O = ) e L 0
e T
and integration over fermion fields and QI FOTc ruciel | Neutson stars
Wick rotation (imaginary time) Baryon density

7 = [@Ae‘Sgauge[A] - det(y*D, +m+puy*) —> For u # 0 complex phases don't cancel
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The infamous sign problem

e Importance sampling
Interpretation of e s det(M)

as probability weight
e Highly oscillatory integrands
[DAe s O | det[M(A)] | 'Y

0O) =
) [ DAeSemuse | det[ M(A)] | ei¢™)

@
~
o= |
-~
©
—
Q
Q.
5
et

near cancellation of pos and neg contribs

A=0 — %\# Hadrons ~
N o] A=20 S,
c A S Ty
5 T
..q_'! . Atomic nuclei
=
Baryon density
_3 *=0 3 [de Forcrand ‘10]

[ dxexp(—x? + ilx) > [ dx exp(—x?)cos(1x)
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HEP application focused quantum simulations

® Real-time evolution on quantum computer — .
can avoid sign problem \¢(0)>E e h

e Continuous field theories ¢(x) infinite dimensional 'matrices

. . —> 2
describe particle phenomenology ‘(X(T)|U(T, —T)|pp(—T)>
HField
B
. . . . Q+Q R} L ] L ]
e Needs discretisation Kogut-Susskind G G G R |
irrespective of classical formulation ppraa DT T } .
. E —»® 9 9 ° o - H™
Or quan.l-um ComPU'l'Cl'l'lOrl [Kogu.l., Sussklnd ’74] O 0 9 0 9 -0 9 -0 9 v
HMatté'rad.Q.Q.d.Q
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Steps to Hamiltonian Simulation on the lattice (Kogut-Susskind)

We consider a non-Abelian gauge theory with fermionic matter fields. The gauge group

is general and denoted as SU(NV)
1

The Lagrangian density is given by L=—-F%F* 44 (iy"D,, —m) 1

where:

P3H Summer School

4 K

y: Fermion field m: Fermion mass
structure constant

y#: Gamma matrices satisfying Clifford algebra of gauge group

/

F}: Field strength tensor F$, = 0,A% — 0,A% + gf*" A> A,
D, Covariant derivative D,y = (0, —igT*A%) ¢

\ generators of
gauge group
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Deriving the Hamiltonian density

Gauge fields A : ST oL _ _ fOua
(0o AS)

electric field components

v

spatial components 7% = Ve — pra

temporal component (u =0) 7 =0

oL oL

Ty = — gt p = — =0
= Boon) Y "6 = 3(000)

Fermion fields v, u:

 does not have a canonical momentum

associated with it -> primary constraint
thus, it is not an independent dynamical variable
Hamlitonian needs to be constructed carefully to

Legendre transformation: take constraint into account

Hamiltonian density ~ H = 70y A}, + my0ptp — L

P3H Summer School Lecture 39 Michael Spannowsky October 2024



replace the dy component in terms of conjugate momenta (Hamilton approach)

Gauge ﬁeld: 7_‘_ai _ _FOia — (80Aia . 81A0a + gfabcAObAz'c) | (‘9014“" _ _ﬂ_ai B Dz‘AOa
with DiAOa — 6iA0a . gfa,bcAibAOC

Fermion field: 0% = —i(a-D — Bm)y — gAyT*yY  with Dirac matrices a and f

ey H = 7% (— — D'A%) +ipT (=i (- D — fm) ) — gALT ) — L

1 . 1 g
= ot 4 JFGFY 4yt (<o D+ Bm) ¢ + AGG -
/ T T Gausss law operator
Electric Magnetic Fermion G0 i e
Energy Term Energy Term Energy Term - DTy

Physical states “P) must satisfy G

W) = 0 to ensure gauge invariance (Gausss law)

The continuous

1 1

4

Hamiltonian H = /d%% with H = §7r‘“'7r“i + ZFLF9" + f (—ia- D + Bm) ¢ + AGG*

operator H is
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Discretisising Space: Introducing the lattice

Spatial lattice: Lattice sites defined by integer coordinates n = (n,, ny,n,)

Lattice spacing defined by the value a (fixed distance between neighbouring sites)

— serves as UV cutoff

The time remains continuous to retain the Hamiltonian formulation

Link variables: When discretising a gauge theory onto a lattice, we replace the continuous space-
time with a discrete set of points (sites). The gauge fields A (x), which live on

continuous space-time, need to be represented in a way that preserves gauge
invariance on the lattice

-> variables U are introduced such that they maintain gauge invariance
defined as  [J;(n) = '/ (1"

The link variable U;(n) represents the parallel transporter (also known as the

Wilson line) along the link from site n to site n + i. It encodes the phase
factor acquired by a particle moving through the gauge field along that link.

Fermion Fields: w(n) placed at the lattice sites, representing matter fields at each space point
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Define plaquette operator U, (n) = U,(n)U,(n + /i)U/j(n + f/)UZ (n) e UE‘:O) n+l

The plaquette operator is a measure of the curvature (field strength) vl y Au o

of the gauge field over the area of the plaquette. In the limit of small e

lattice spacing a, U, (n) approximates the exponential of the field >

strength tensor integrated over the plaquette area. " Uuy el
o a2g?

For small @ we have U, (n) = e @AMTY 1 4 iagA,;(n)T* — 5 (Aﬁ(n)T“)2 + O(a?)

Calculating the plaquette for small a U, (n) = (1 + iagAj(n)T“) (1+iagAl(m+ p)T?)

with AX(n + /i) = A2(n) + ad,Al(n) + O(a?) X (1 — iagAf(n + ﬁ)TC) (1 —iagAZm)T?) + 6(a)

=1+ iang;’,/(n)T“ + 0(a®)

With the plaquette we can express the latticised magnetic energy term Hy as the
trace over the plaquete:

| a’
Hy=— Y (Nc —ReTr [Uij(n)]> ~ o ) F

2
8" ni<j n,i<j

!

gauge invariant quantity
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2
Electric energy term Hp = % > B ()]

n,.,a

Fermion energy term Hrp=Hg+ Hy

1 . . o
Kinetic term:  Hi = 5- > [¢/m)aTin)v(n +i) —v' (n+8)a'U (m)é(n)
Mass term: Hy =m ) ' (n)By(n)
Ensure gauge invariance of H on the lattice group element at site n

rd

Local gauge transformations at each site n ¥(n) — G(n)y(n) and Link U;(n) — G(n)U;(n)G'(n + 1)

—  Electric energy term [El.“(n)]2 is gauge invariant

—>  Trace of plaquette variable Tr[U;(n)] is gauge invariant
—  The combination l//*(n)Ul-(n)l//(n + f) is gauge invariant

The discrete version of Guasss law operator is G*(n) =) [Ef"(n) — Eif(n — 5)] + g" (n) T (n)

)

Physical Hilbert space states must satisfy G%(n)|¥) =0
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The fermion doubling problem

Consider Hp = Hg + Hy  for the free theory (i.e. no gauge interactions) U;(n) = 1

< dip
Fourier transforming w(n) = J o) e'P"r(p), inserting into Hy and massaging the
_z \ &7
equation gives
" J L 7' (p) 2 in(ap;) | w(p) J o 7'(p) (a-K) @(p)
= SIN\Ap; = a -
= | i ® |, P @) = | G P (P

where K = —(sin(ap,), sin(ap,), sin(ap,))
a

d
2 sinz(api)

i=1

-> the eigenvalues are given by E(p) = £ | K| = £ —
a

. T

the energy vanishes when sin(ap;) = 0, which occurs at p; =0 and p;, = —
a

Thus, there are 2¢ points in the Brillouin zone where E(p) = 0. In four dims (d=4) there are 16
such points, indicating 16 fermion species (including doublers)
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Introducing staggered fermions

To mitigate the fermion doubling problem, we introduce staggered fermions, which involve:

e Replacing the multi-component Dirac spinor y(n) with a single-
component fermion field y(n)

e Redistributing the spinor components across neighbouring lattice
sites using staggered phases 7;(n) = (—1)" "+

The staggered fermion Hamiltonian (for U(n) = 1 for simplicity) is
1 A A
_ | f N : f
Hy = 55 2o @y + ) =7+ Dy +m 27 @

After Fourier transform, one has
d

d .
He= | o 70 [%2 sin(ak,) n] 700 + m| 2=

o o 7 (0F

By distributing the spinor components across different lattice sites and introducing the
staggered phases, the number of fermion species is reduced

e in d dimensions, the number of species reduces from 29 to 24/

e In four dimensions, from 16 to 4

While this doesnt completely eliminate the fermion doubling problem, it significantly
reduces the number of unphysical doublers.

P3H Summer School Lecture 45 Michael Spannowsky October 2024



Assembling the Lattice Hamiltonian

The total Hamiltonian is H=Hy+ Hy+ Hp

2

Electric Energy Term Hp = % > [Ef @)
Magnetic Energy Term Hp = — 37 [N, - Re'Tr (Uy; (n))]
g n,:<j
Fermion Energy Term Hp = % Zm(n) [XT(n)Ui(n)X(n +1) —x"(n+ %)UJ(n)X(n)}

(Staggered Fermions)
+m Y x'(n)x(n) y Field
n B

9999 99 999

Q+O 9 9 ]

Numerical methods for Hamiltonian 50 0000000

P ] ] 4 ]

simulation: b ebedeses
HEle e 9 9 9 9 } Hint
L4

e Tensor Network Approches 58 5000 000

P ] R R ]

9 9 o 9 ® 9 [ T |

® Quantum Simulations HMaua“"

P3H Summer School Lecture 46 Michael Spannowsky October 2024



Concrete example U(1) in 1-dimension

The U(1) gauge field is continuous U(n) = ¢"”™ and has to be truncated

— Assume 2 sites
— Truncate the Electric Field E(n) - assume E(n) = — 1,0, + 1

2n 4r
— Truncate the Link Variables U(n) - e.g. assume 6(n) = 0,?,?

> Truncate fermions - assume single fermion mode per site, i.e. each site
either O or 1 fermions

3 states for electric field on each site, thus 3 links => 3 X3 =9

|_17 _1>7 |_1’ 0>’ |_17 +1>’ |O7 _1>’ |07 O>’ |0’ +1>’ |+17 _1>’ |+170>’ |+1’ +1> } HdmiH'OniOn
each site 0 or 1 fermions x 2 sites => fermion Hilber space 2° = 4 36 x 36
10,0}, 10,1), |1,0), | 1,1)
Thus, 36 basis states are labeled as | Ey, E; ny, n;) (Hii 0 0 0 Hig 0 0\
0 HQ’Q 0 0 0 H2,7 0
_ _ , 0 0 Hys O 0 0 Hsg
Calculate elements H;; = (Ey, Ej;ng, ny | H| Ey, Ey; ng, ny) o 0 0 H, 0o 0
: : . H=| : : : ST ST
with H = Hp + Hi, + H,;,  (Hp is absent in 1d) Hg: 0 0 0 ... Hse O ... Heg
0 Hyp O 0 ... 0 Hiz ... 0
1 .
' — _(F2 2 ; ; ; ; o ; o
diagonal element H;; = 2(E0 + E7) L0 0 Hy 0 . Hy 0 .. Hyof

l
OFF-diagonal element Hl] - — En(O)U(Eo) 5E6,E0—1 5,1(/),”0_1 5ni’nl+1
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Hamiltonian simulation - what resources do we need?

e Discretisation of field ¢,(x;)

P, Py uy P, Ny : # of digitised field values
S e 9y Hilbert space . 1
®© o 0o o — . , , ,
: : : : has dimension dim H = (n¢) L n; : # of lattice points per dim
4 7 ‘ | | d : # of dimensions
CL=nl Energy range: — <E< 7

L

[Jordan, Lee, Preskill ‘12]

® On quantum devices algorithms require exp less resources In,[dim H]

e e N[ Y4 . tion\
| PDFs » Hard Process Parton Shower H?dron . Classical uan.l.um
e i | e Lattice field 4
. : digitisation 6
- e sites 9
B e Com 32 s 08
N AN %< AN J nL - 100 n¢ 2 ﬁ m
14Tev 01-1Tev 10 GeV 0.1 GeV

Quantum computing not optional for Hamiltonian simulation

Effective Field Theories can ameliorate problem
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q[o] [0)

single-qubit gate measurment

™ \

q[1] [0 ?
al2] |o)
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=)

— H o X —e Hl\/f\
H —p

af4] fo

co 5,/

=
e O
W W N N~
|
s
fARY
1/
—e
N
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4R
>
a

%

%

[€

e——
=

s
%
e

o n > 3 . two-qubit gate

Q u a n .I- u m C i rC u i 1-5 @ QST using quantum machine learning Recover information

(0

of the target state

F(6) [ Optimising [

Experimental
setup
Classical quantum

circuit simulator

1S dVMS

\
c
c
(4
(

SN A QA

[

\
-

¢

. n auxiliary

(
AR
P15

L

" qubits

A
3/

—-aﬁﬂ_q*ﬂﬂ'
q-\q.-—\‘\""“\’l"

(Y (¢

P3H Summer School

layer 1 odd  even layer d extra

" ‘ . layeri layer;j layer
( ((-/9 %); > l D R, gate |:] R, gate - CNOT gate

- J
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10)
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Single-Qubit Quantum Gates

Illustrative to write single-qubit operation as matrices

X-Gate: Quantum equivalent to classical NOT gate

0) — |1)
1) — |0)

— Flips |0> to |1> and vice versa (hopping)

Represented by matrix X= (? é)

concretely  X|0) = ((1) (1)) ((1)) = ((1)) = |1)

It is unitary XX ' =XX'=1
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Z-Gate: Represented by matrix ((1) _Ol)

Action O> s O)
1) — =|1)

— Eigenvalues +- 1
Note, the X, Y and Z gates are represented by the Pauli matrices
_ (01 0 —i 10 .
Ox = (1 O) Oy = (i 0) o, = (0 _1> [O’i, O'j] = 22€ijk0'k

det o; —1 1 0
’ J%ZG%:U?):—iUlOQUg:(O 1)2[

tI'O'j — 0
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1 1
Hadamard gate: Matrix representation \% (1 _1)

. 1 0) +|1)
Action: 0) > —(0) + 1), «— |+) :=

1 J—
1) > —=(10) — 1)) e | = 102 =11

V2 V2
| | 1 0
Phase gate: Matrix representation P, := ( 0 ¢ )

With special phase values

S=Lyp T:=Pys R:=P .,
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Summary of fixed 1-qubit gates:

Gate| Circuit representation| Matrix representation| Dirac representation
X 01 [1) (0] + [0) (1]
X 10
0 —i
Y 111)(0] —i]0)(1
Y <i0) [1)(0] = £]0) (1]
1 0
4 Z <0 _1) [1)(0] = [0) (1]
(11 1 1
T 1 1 1 _
H AR 7 (0 + IO+ 5 (10) = [1)){1]
10 :
S S %2<Oi) —10)(0] + —=i[1){1]
1 1 0 1 0\ (0 1 (=im/4)11y(1
T T V2 0 (—iT/4 Til ) |+7§€ | 1) (1}
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Quantum gate can be parametrised

Pauli rotations:

COS

0
R, (0) = o130 — ( 2
—i sin (

) —i sm(
9
P

) ¢

. (cos(
R,(0) =e 2% = (

0
2
0
S1n )

)

.0
.0 e ‘2 0 0 6
R 9 - 1290 = . — —] —1s81n —
(0) =e < 0 e,g) (3052[ zstZ

generalised form via R(01, 02, 65) = R.(61)Ry(62) R, (03)

i (— 53— 93>COS(92) ol (=1 +%) sin(92)

R0, 0>, 05) = |
( 2 el (3= 93)sm(92) el (F+ 3)008(92)
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Measurement process

Measurement process of a generic (normalised) qubit state [¢) = a0|0) + ai[1)

represented by projection onto eigenstates Py, =|0)(0|] and P; = [1)(]]

Prob of measurement outcome O is then p(0) = tr(Po|w)(]) = (| Pyleb) = |agl?

and p(1) = ||’

L o Rly)y
After measurement qubit is in state  [¥) < = 10)

VAW Polth)

The observable corresponding to a computational basis measurement is
Pauli-Z observable

o, = |O> (()| — |1> (1| (we know eigenvalues +1 for |0> and -1 for [1>)
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The expectation value (0;) in a value in [-1, 1]. Its error can be estimated
as sampling from a Bernoulli distribution.

Wald interval gives

n 106 _ 1
(sui'l-ed for [arge s and P~05) ShCll"e OF % / € 0.00 \
_— sample in 5 10°
p(l —p) R
€ — Z¢ 51-01-6 1 L'S 104 '/—’_— f — 0.01 -\.\~

S — /7 \s
) ’ \
f ™ = 1000 ¢ \
shots N ‘

stat. z-value 100 f et e=0.1 e

- So

estimate for p

— For € =0.1 and conf level 99% one needs 167 samples

For e =0.01 and conf level 99% one needs 17,000 samples

— Overall might need a large number of shots on quantum computer

This needs fto be taken into account when comparing quantum and

classical computers in ferms of speedups and quantum advantage
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The Bloch Sphere

Since  [¢9) =a|0) +B[1) with |af?+|B> =1
one can find angles such that

. s . 0
a = e"Ycosg B = € sin 5

Thus, with ¢ =0 —7 single qubit can be
parametrised as

. 0 . 0
1)) = e (cos §|O) + P sin 5'”)

(sin @ cos ¢, sin  sin ¢, cos @)

where a global imaginary phase has no measurable
effect and can be omitted.
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2-qubit states

Are built by tensor products, each qubit can be in state |0> or in state 1>
So, for two qubits we have four possibilities:

0)®10),10)®[1),[1) ®[0),[1) ® 1)
that we denote

0)10),10) [1),[1)10), 1) 1)

or
00),|01),{10), [11)

We can have superposition as a generic state

1¥) = ago [00) + apq [01) + 10 [10) + 41 |11)
1

with complex coefficients such that  »  |auy|* =1
x,y=0

P3H Summer School Lecture 59 Michael Spannowsky October 2024



2-qubit states
Furthermore, we can express the state as a vector
(00
Q01
Q10
\aﬁ/

For which we find the inner products

(00|00) = (01]01) = (10|10) = (11[11) =1

(00]01) = (00]|10) = (00[11) = --- = (11|00) = O

A 2-qubit quantum gate is a unitary matrix U of size 4 x 4
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2-qubit gates

0100
unitary matrix representation \8 8 ? g) )

In words: if the first qubit is |0> nothing changes. If it is |1> we flip
the second bit (and first stays the same)

Action: |00) — |00) 01) — |01)
10) — |11) 11) — [10)

As a gate: x,ye€{0,1} — |xX) —e— |X)
y) —b— ly®x)

® A set of gates that can approximate any quantum operation
-> Universal quantum computer

e.g. Rotation gates R (0), Ry(0), R,(0) + phase shift gate: P(¢) + CNOT
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The CNOT gate is an extremely important gate
e It realises conditional probabilities

e It creates entanglement

read circuit from
left to right

02 —{ H
0)2 j >  CNOT((H, ® 11)(|0)2 ® 0)1))

|O>1 jj/

1 1 1
CNOT(—[0)» ® [0} + — |1}, ® |0 = —(10), K |0}y 4+ |1} ® |1
(ﬁ| )2 @ 10); ﬁl )2 ®10)1) ﬁ(| )2 ®10)1 + [1)2 ® |1)1)

Bell state (fully entangled)

e It can copy classical information, because
|00) — |00)
110) — |11)
e Constructs other control gates
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N-qubit states

When we have n qubits, each of them can be in state |0> or |1>

Thus for n qubit states we have 2"n possibilities:

00...0),[00...1),...,[11...1)

or simply

|O),|1),...,|2”—1>
A generic state of the system will be
) = ag|0) + a1 [1) + ... +agn_q 2" — 1)

2n_1
With complex coefficients, such that Z a]? = 1
i=0
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Suppose we have the N qubit state

P) = a0 |0) + a1 [1) + ... +o2nq 27— 1)
If we measure all its qubits, we obtain:

e 0 with probability |ag|? and the new state will be |0...00)

e 1 with probability |a1|° and the new state will be [0...01)

e 27— 1 with probability |a2n_1|? and the new state is [1...11)

Completely analogous to 1 and 2 qubit situation but now with 27
possibilities
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Example: Turning a Hamiltonian tferm into a gate

Recall H = H, + Hy + --- + Hy

— vy H vy — - — vy | —

Assume, universal gate operations on device are {H,R;,CX}

Example 1  Assume H =7 — U=¢"“ ——»  —Rs(2)—

Example 2 Assume  Ho=X —> Since HXH=/—=X=HZH

— U =He ““'H (proof via CBH Formula)

— > H Rz(Qt) H —
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Example 3 H=7&®Z note

e—Z®Zt 7& e—zZt ® e—zZt

with (Z® Z)2=1 one finds e 2O — cos(t) —isin(t)Z @ Z

for the action on states we find

e!(ZBZ)100) = (cos(t)l — isin(t)Z @ Z)|00) = (cos(t) — isin(t)) |00)

L(Z82)t

Li(ZR2)t

11) = (cos(t)l —isin(t)Z ® Z) |11) = (cos(t) — ¢sin(t)) |11)

01) = cos(t) |01) —isin(¢)Z |0) ® Z |1) = (cos(t) + isin(t)) |01)

which can be written in matrix form as

e 0 0 0]
| 0 et o 0o |01) if # of1lis even one gets - :
WWLIRL)t
HIEA = it o |10 if #of 1is odd one gets +  (Parify of state)
0 0 0 e it 111)
. . —at
circuit that l l with Rz (2t) = [60 e?t]
implements that D—| R, (2t) D

P3H Summer School
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The Ising Model

e The Ising model is a fundamental mathematical model in statistical mechanics used to
understand phase transitions and critical phenomena, particularly in ferromagnetic materials.

e Originally proposed by Wilhelm Lenz 1920, extensively studied by his student Ernst Ising 1925

e The model considers a lattice of spins in one of two states: up (+1) or down (-1). These spins

represent magnetic dipole moments of atomic spins in material and interact with their nearest
neighbours. -> Ferromagnetism, critical phenomena and phase transitions

® Exact solutions in 1-D and 2-D (Onsager’s solution 1944) - no exact solution in 3-D (NP-hard)

interaction strength J  magnetisation

Classical Ising Model: [ = — Z Ji; 050j — L Z h; o
(2,5) U

sum over neighbouring spins

/ transverse field

Quantum Mechanical Ising Model: H = —J Z gfg;? —h Z gz.z — T Z O';:U
(i.) i i

single trotter step

N-1 N
Real-time evolution U(t) = e """ with H=—J ) ojo;,, T ) of = ciJotojo,, jldto?
1=1 1=1
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Now that the model has been constructed and Trotterised, we are ready to implement the
redl-time evolution on a quantum device:

Assume system with 2 sites:

e~loz07" = controlled Z
—J)D . o%0~F ‘ ‘
Z’l (4 Z+1 > RZ(Q.] 5t)

For the term

simple R, rotation _
For the term —I'> . of al > R,(2I'3t)
% combined
2-site Ising model - one trotter step: [ l R, (2L 0t) —
R.(2J 6t) —&— R.(2I't) —

3-site Ising model - one trotter step:

R,(2J 6t)

R, (2 6t)

R,(2J 6t)

R, (2T 6t)

R,(2J 6t)

R,(2T'6¢)

R.(2J 6t)

R, (2 6t)

R.(2J 6t)

R, (2T 6t)

Ry (2T 6t)

open boundary conditions periodic boundary conditions

See hands-on session

https://github.com/simon-j-williams/QCIsingModel_KIT/tree/main
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Examples of HEP usecases for Hamiltonian simulation

® Real-time evolution in QFTs:  scattering processes, quark-gluon plasma
formation, out-of-equilibrium dynamics

e Sign-problem in finite density QCD:  QCD phase diagram at finite baryon
density or nuclear matter in neutron
stars

e Simulating Early Universe Physics: Phase transitions, reheating

e Neutrino Oscillations in Dense Media: Neutrino osciallations in supenovae,
neutron stars or early universe

environments
® Gauge theories in higher dimensions: Classically expensive. Extra dim models

¢ Topological QFTs: Chern-Simons theory and Chern-
Simons-like tferms in SM
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Wave/particle duality Quantum tunneling

@%L (0) — H |~ t ¢ H <
m ¢ c < ¢
3 ¢ ¢ ¢
1 oy —H} TH]—
Quantum Physics . *— .
Summary A ( |
QuankdhEHEHEIamE De-coherence, /Coherence Superpositions 4 ¢ | :
\ AA P 5 D ,

TSNP : &2 i 07 ( (((/)) \%};>

Superposition of Waves

e Quantum computing is a new computational paradigm with a high
potential for computational improvements in many science areas

e Hamiltonian simulation is an active research area ideally suited
to be executed on quantum devices

e It might be key to avoiding the so-called ‘sign problem’ and to
obtain a quantum advantage in computations for fundamental physics

® Hands-on session:

https://github.com/simon-j-williams/QCIsingModel_KIT/tree/main
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