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I Hear And I Forget.  

I See And I Remember.  

I Do And I Understand.

Confucius 
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“Nature is quantum […] 
so if you want to 

simulate it, you need a 
quantum computer”  
- Richard Feynman 

(1982)

Easily said … so how do we do that?

Beginning of a scientific journey that accelerated 
in recent years tremendously….
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Pre-digital age computing:

Digital age computing:

• express values in combinations 
and positions of beads

• manipulate beads mechanically

• convert position and combination 
of beads back into value

6+10
Binary

define algebraic 
procedure on new 

representation

obtain result in 
new 

representation

convert into 
different 

representation

10000

convert back

16

Abacus

P3H Summer School         Lecture



Quantum Age computing

initialisation
(quantum) operations on qubits

results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically 
evaluate how likely each outcome is (by calculating and measuring several times). 

Since we work only with probabilities, we measure only probabilities
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How can these quantum principles help to 
improve computations?

quantum (superposition)  
can be in all states at same time

classical

system is in one state out of 16

• A measurement of the quantum system after the computations are performed results in 
the observation of one of these configurations, with a probability that corresponds to 
the computational processes

• Computations can be performed simultaneously on the whole configuration 
space. -> can be much faster than classically

• Configuration space here 16=2^4 states.
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Quantum Gate

quantum gate and multi slit experiment are conceptually identical

While operating one cannot see how the 
gate works. Only at the end one can 

measure the outcome

(box is closed during operations)
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Galton Board as analogy for 
Quantum Computer
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Superposition

Entanglement

Tunneling

Heisenberg 
principle

Quantisation

The quantum mechanical principles on which the algorithms 
have to rely to have a chance for a quantum advantage are

Required to go beyond classical computing
Configuration 

space sampling
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What are the potential advantages of Quantum Devices?

• Speed and efficiency:

• Quantum Simulation:

• Quantum 
Cryptography and 
Security:

• Quantum Information 
Science:

• Quantum Sensing and 
Quantum Metrology:

Simulating genuine quantum systems, e.g. molecules
Medical applications, Chemistry applications, HEP etc

Encryption and decryption, e.g. emails, RSA 

Transformation, storage and transmission of 
information, e.g. databases, teleportation, 
networks etc

• Quantum Machine Learning 
and Optimisation:

Simple classical tasks performed faster 
or with less electricity consumption etc

Learning and optimisation based 
on quantum algorithms

High-precision measurements, Quantum 
Imaging, Quantum Navigation/Timing
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Private and Public Sector is placing big bets on Quantum Computing

Significant financial investment 
expected across many sectors

In US, already now higher financial 
investment from private than public sector

All national and international labs have QC programmes  
(Fermilab, BNL, LBNL, CERN, …)
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Basic motivation for Quantum Computing

“Can we take the quantum mechanical properties of 
microscopic objects and scale them up to larger quantum 

systems while harnessing their quantum prowess?”

Disclaimer: nobody today thinks that quantum computers 
will universally replace classical computers

For some specialised task quantum supremacy has been shown
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Technical challenges of a quantum computer

60

• Many quantum paradigms require system to be perfectly isolated (shielded 
from outside) to maintain coherence - for as long as the algorithm takes 
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The road to Quantum Advantage

IBM 400 qubits in 2022
IBM 1000 qubits in 2023
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Analog vs Digital Quantum Computing
Analog and digital quantum computing are two different approaches to quantum 

computing, each with its own advantages and disadvantages.

Digital Quantum Computing (DQC):  

• Digital quantum computing, also known 
as gate-based quantum computing

• Uses quantum logic gates to perform 
operations on qubits

• Considered to be more versatile than 
analog computing.

Example: IBM's and Google’s quantum 
computers use the gate-based model of 
quantum computing.

• However, might require higher level of 
control over the quantum system, which 
can be challenging

 Analog Quantum Computing (AQC): 

• Based on the principle of quantum evolution of 
a quantum system, e.g. quantum annealing

• The system uses its intrinsic quantum dynamics, 
following the Schroedinger Equation

Example: D-Wave Systems. The D-Wave quantum 
annealer uses a network of qubits that can 
collectively tunnel through the solution space to 
find the global minimum of a given function.


• Ground state represents the solution to the 
problem at hand

• Not always universal, but often well-suited 
for optimisation problems
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Popular Quantum Computing paradigms
Quantum computing has long and distinguished history but is only now becoming practicable.

Type Discrete Gate 
(DG)

Continuous Variable 
(CV)

Quantum Annealer 
(QA)

Property Universal (any quantum 
algorithm can be expressed)

Universal 
- 

GBS non-Universal

Not universal —  
certain quantum systems

Advantage most algorithms and tech 
support

uncountable Hilbert 
(configuration) space

continuous time quantum 
process

How? IBM - Qiskit  
~ 100 Qubits Xanadu DWave - LEAP  

~7000 Qubits

What?
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HEP

Data analysisDedicated HEP 
Algorithms

Hamiltonian 
Simulation

New 
physics 
searches

Matter

antimatter

asymmetry

Multi 
particle 
dynamics
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Quantum Mechanics Basics
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Phenomenological observations:

•  Randomness of measurement outcomes:  
Repeated measurements of the same physical quantity (observable) A 
in the same physical conditions (state) produce different results. 

• Post-measurement state: Let ψ be the physical state of the 
considered quantum system. If we perform a measurement process on 
the system to measure the observable A and the obtained outcome is 
a ∈ R then the state of the system, after the measurement, is ψa. 

• Incompatible observables: There are pairs of observables that cannot 
be simultaneously measured by an experiment. 
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Mathematical description of QM for QC

•  Define and work in Hilbert space Superposition principle
Distance and similarity measure
composition and transformation 
of objects

• Physical states are elements of Hilbert space

• States are manipulated through linear 
operators A(αψ + βφ) = αAψ + βAφ

• Physical quantities are expressed through self-
adjoint operators, that have real eigenvalues  
λ⟨ψ|ψ⟩ = ⟨ψ|Aψ⟩ = ⟨Aψ|ψ⟩ = λ∗⟨ψ|ψ⟩

A

• The eigenvalues of unitary operator are complex numbers with unit modulus, 
also called phases: for φ eigenvector of unitary operator U with eigenvalue μ,  
⟨φ|φ⟩ = ⟨Uφ|Uφ⟩ = μ∗μ⟨φ|φ⟩ = |μ|2⟨φ|φ⟩, then |μ|2 =1, so μ=eiφ with φ∈R

• Spectral Theorem: If A ∈ B(H) is normal, that is, AA† = A†A, if and only if 
there exists an orthonormal basis of H made by eigenvectors of A.

any self-adjoint operator is diagonalisable and admits a spectral decomposition

Functional calculus for bounded (and unbounded) operators
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• Composite quantum systems:

Let HA and HB be Hilbert spaces and ψ ∈ HA, φ ∈ HB.  

The tensor product of ψ and φ is defined by: 
The tensor product of Hilbert spaces  consists of all such tensor products  
equipped with the inner product: 

The tensor product of operators A ∈ B(HA) and B ∈ B(HB) is:

If dim HA = n and dim HB = m then dim(HA ⊗HB) = n·m.                  

HA ⊗ HB

12 CHAPTER 2. BASICS OF QUANTUM MECHANICS

of the self-adjoint operator A. The orthogonal projector Pλ onto Hλ has the form:

Pλ :=
dimHλ∑

i=1

|φi⟩⟨φi|, (2.2.8)

where {φi}i=1,...,dimHλ
is an orthonormal basis of Hλ and the symbol |φi⟩⟨φi| denotes

the orthogonal projector Pi( · ) := |φi⟩⟨φi| · ⟩ that projects onto the 1-dimensional
subspace spanned by |φi⟩. The spectral decomposition of the self-adjoint operator
A is:

A =
∑

λ∈σ(A)

λPλ, (2.2.9)

where PλPλ′ = 0 for λ ̸= λ′. The collection of orthogonal projectors {Pλ}λ∈σ(A) is
called spectral measure or projection-valued measure (PVM) of A. Given a
map f : R→ R, we denote by f(A) the self-adjoint operator whose eigenvalues are
f(λ) with λ ∈ σ(A), then:

f(A) :=
∑

λ∈σ(A)

f(λ)Pλ. (2.2.10)

Applying the spectral decomposition of a self-adjoint operator A, it is easy to check
the equivalence between the operator norm and the spectral radius:

∥A∥op = r(A). (2.2.11)

As illustrated in the next section, in quantum mechanics, any physical quantity
is described by a self-adjoint operator whose real spectrum represents the set of
the possible outcomes of a measurement process of that quantity. The projectors
of the associated spectral measure are the mathematical tools used for calculating
quantum probabilities and describing the collapse of the quantum state due to the
measurement process.

The notion of tensor product is crucial in quantum mechanics to describe com-
posite quantum systems.

Definition 2.2.7 Let HA and HB be Hilbert spaces and ψ ∈ HA, ϕ ∈ HB. The
bilinear form ψ ⊗ ϕ : HA × HB → C defined by:

ψ ⊗ ϕ(x, y) := ⟨ψ|x⟩A⟨ϕ|y⟩B x ∈ HA, y ∈ HB, (2.2.12)

is called tensor product of vectors ψ and ϕ. The complex vector space:

HA ⊗ HB := span{ψ ⊗ ϕ : ψ ∈ HA,ϕ ∈ HB} (2.2.13)
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2.2. MATHEMATICAL FRAMEWORK 13

equipped with the inner product defined by:

⟨ψ ⊗ ϕ|ψ′ ⊗ ϕ′⟩ := ⟨ψ|ψ′⟩A · ⟨ϕ|ϕ′⟩B ψ,ψ′ ∈ HA ϕ,ϕ′ ∈ HB, (2.2.14)

and extended by linearity, is called tensor product of Hilbert spaces HA and
HB.
Given A ∈ B(HA) and B ∈ B(HB), the tensor product of linear operators A
and B is:

(A⊗ B)(ψ ⊗ ϕ) := Aψ ⊗ Bϕ (2.2.15)

that extends to HA ⊗ HB by linearity.

The complex vector space HA⊗HB, equipped with the product defined in (2.2.14), is
a Hilbert space as well. If dimHA = n and dimHB = m then dim(HA⊗HB) = n ·m.
We define also the tensor product of the spaces of linear operators on HA and HB:

B(HA)⊗B(HB) := span{A⊗ B : A ∈ B(HA), B ∈ B(HB)}. (2.2.16)

We have the remarkable identity: B(HA)⊗B(HB) = B(HA ⊗ HB). Therefore, any
T ∈ B(HA ⊗ HB) can be written in the following form:

T =
∑

i

Ai ⊗ Bi, (2.2.17)

where {Ai}i ⊂ B(HA) and {Bi}i ⊂ B(HB).

Example 2.2.8 If HA = Cn and HB = Cm then:

A =

⎛

⎜⎜⎜⎜⎝

a11 · · · a1n
· · · · ·
· · · · ·
· · · · ·

an1 · · · ann

⎞

⎟⎟⎟⎟⎠
∈ B(HA) B =

⎛

⎜⎜⎜⎜⎝

b11 · · · b1m
· · · · ·
· · · · ·
· · · · ·

bm1 · · · bmm

⎞

⎟⎟⎟⎟⎠
∈ B(HB)

A⊗ B =

⎛

⎜⎜⎜⎜⎝

a11B · · · a1nB
· · · · ·
· · · · ·
· · · · ·

an1B · · · annB

⎞

⎟⎟⎟⎟⎠
∈ B(HA ⊗ HB)
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and

•  



Density matrix: 

Consider a quantum system with state space Cd. A density matrix, commonly denoted as 
ρ , is a linear operator ρ ∈ L (Cd , Cd ) such that: 
1. ρ ≥ 0, and 
2. tr(ρ) = 1. 

The density matrix is a representation of a system’s statistical state

4

Exercise 1.1.2 Suppose now that we choose to roll the fair or unfair die with probability
PY (fair) = PY (unfair) = 1/2, but don’t tell you which one it is. However, I show you the
outcome X of the die roll. That is, I have Y and you have X . Suppose that X = 3. What is the
most likely die? I.e., is it more likely that Y = fair or Y = unfair? How about X = 6? ⌅

1.2 Density matrices
Let us start by investigating a more general formalism for writing down quantum states. There are
two motivations for doing so. Let’s start with the basic question of how to write down the state of
one of several qubits. To this end, imagine we have two quantum systems A and B. For example, A
and B are two qubits in a joint state |yiAB and we want to know the state of qubit A. If the joint
state is |yiAB = |yiA ⌦ |yiB, that is, it is obtained by taking the tensor product of qubit A in the
state |yiA and qubit B in the state |yiB, then the answer seems clear: A is simply in the state |yiA.
However, if you took week 0, you may remember that some bipartite quantum states |yiAB, defined
over two systems A and B, can be defined as superpositions of tensor products, in a way that makes
it non-obvious whether the state can be directly written as a single tensor product. A good example
of such a state is the EPR pair |EPRiAB = 1p

2
|0iA|0iB +

1p
2
|1iA|1iB. For such states we cannot

express |yiAB = |yiA ⌦ |yiB, that is as a tensor product of two states |yiA on A and |yiB on B. It
is thus unclear how we could express the state of A without making any reference to B. Such a
description should still be possible: after all, the state does exist! If it doesn’t fit in our formalism
of states as vectors it must mean the formalism is incomplete, and we need to find a mathematical
generalization for it.

The second motivation for a more general description arises from a situation in which a
probabilistic process, for example a measurement, prepares different states with some probability.
Suppose we encounter a situation in which we had either a state |y1i with some probability p1,
or a state |y2i with probability p2. To express the state accurately, we have to take into account
both states and probabilities {|yii, pi}i. Can we somehow write down the proper mathematical
description of the state created by such a process?

1.2.1 Introduction
The answer to these questions lies in the so-called density matrix formalism. To start with, let us
write down the quantum state |yi of a single system as a matrix r = |yihy|. Note that this is a
rank-1 matrix, it has precisely 1 non-zero eigenvalue (equal to 1) with associated eigenstate |yi.

⌅ Example 1.2.1 Consider the following matrices corresponding to |0i and |+i= (|0i+ |1i)/
p

2

|0ih0|=
✓

1
0

◆
(1 0) =

✓
1 0
0 0

◆
, (1.3)

|+ih+|= 1
2

✓
1
1

◆
(1 1) =

1
2

✓
1 1
1 1

◆
. (1.4)

⌅

How does writing down states as matrices help us to resolve the questions above? To see how,
let us first consider the second motivation for a more general description. In particular, let us
consider the case where someone prepares 2 possible states |y1i and |y2i with equal probability
p1 = p2 = 1/2. Clearly, a superposition is not the correct description: The state really is in precisely
one of the two states, with probability 1/2 each. Indeed, the preparer knows the identity of the state.
If the identity of the state is not known, however, how can we write down the resulting state? It
turns out that we can describe the state of the resulting system as a mixture between |y1i and |y2i.

•  Some states cannot be written as a direct tensor product, e.g. 
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Suppose we encounter a situation in which we had either a state |y1i with some probability p1,
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both states and probabilities {|yii, pi}i. Can we somehow write down the proper mathematical
description of the state created by such a process?

1.2.1 Introduction
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⌅ Example 1.2.1 Consider the following matrices corresponding to |0i and |+i= (|0i+ |1i)/
p

2

|0ih0|=
✓

1
0

◆
(1 0) =

✓
1 0
0 0

◆
, (1.3)

|+ih+|= 1
2

✓
1
1

◆
(1 1) =

1
2

✓
1 1
1 1

◆
. (1.4)

⌅

How does writing down states as matrices help us to resolve the questions above? To see how,
let us first consider the second motivation for a more general description. In particular, let us
consider the case where someone prepares 2 possible states |y1i and |y2i with equal probability
p1 = p2 = 1/2. Clearly, a superposition is not the correct description: The state really is in precisely
one of the two states, with probability 1/2 each. Indeed, the preparer knows the identity of the state.
If the identity of the state is not known, however, how can we write down the resulting state? It
turns out that we can describe the state of the resulting system as a mixture between |y1i and |y2i.

So, using the language of states and their tensor products is not be sufficient.

1.2 Density matrices 5

For equal probabilities, this mixture becomes

r =
1
2
|y1ihy1|+

1
2
|y2ihy2| . (1.5)

We also call such a r a density matrix. In general, if a source prepares the state |yxi with probability
px, the resulting system will be in the state

r = Â
x

px|yxihyx| . (1.6)

Why would this be a good description? Let’s consider what happens if we measure in the standard
basis. If the system would actually be in the state |y ji, then we would expect the probabilities of
outcomes to be

q0| j = |h0||y ji|2 = h0||y jihy j||0i , (1.7)

q1| j = |h1||y ji|2 = h1||y jihy j||1i . (1.8)

If state |y ji is prepared with probability p j, then we would expect the outcome probabilities to be

q0 = Â
j

p jq0| j , (1.9)

q1 = Â
j

p jq1| j . (1.10)

Let us expand one of these terms to relate to the density matrix formalism. We have

q0 = Â
j

p jq0| j = Â
j

p jh0||y jihy j||0i= h0|
 

Â
j

p j|y jihy j|
!
|0i= h0|r|0i . (1.11)

The density matrix r thus accurately reflects what we would intuitively expect from the probabilities
of measurement outcomes.

⌅ Example 1.2.2 If a source prepares quantum states in a probabilistic manner, i.e. it prepares the
quantum state rx with probability px, then the resulting density matrix is given by

r = Â
x

pxrx . (1.12)

The set of probabilities and density matrices E = {(px,rx)}x is also called an ensemble of states.
Note that the case where the source prepares pure states is a special case with rx = |yxihyx| and
px = 1 for a single x. ⌅

⌅ Example 1.2.3 Suppose the source prepares |0ih0| with probability 1/2, and |+ih+| with
probability 1/2. Then the resulting density matrix for the ensemble {(1/2, |0ih0|),(1/2, |+ih+|)}
is given by

r =
1
2
|0ih0|+ 1

2
|+ih+|= 1

2

✓
1 0
0 0

◆
+

1
4

✓
1 1
1 1

◆
=

1
4

✓
3 1
1 1

◆
. (1.13)

⌅

⌅ Example 1.2.4 Superposition is not the same as a mixture. Intuitively, the difference is that a
mixture is an inherently classical mixture: there is a process that prepares one or the other with
some probability. In contrast, a state in a superposition is one and the other. To see the difference,
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is given by

r =
1
2
|0ih0|+ 1

2
|+ih+|= 1

2

✓
1 0
0 0

◆
+

1
4

✓
1 1
1 1

◆
=

1
4

✓
3 1
1 1

◆
. (1.13)

⌅

⌅ Example 1.2.4 Superposition is not the same as a mixture. Intuitively, the difference is that a
mixture is an inherently classical mixture: there is a process that prepares one or the other with
some probability. In contrast, a state in a superposition is one and the other. To see the difference,
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≠ Bell states

• Concepts pure vs mixed states, coherent vs incoherent superposition

• Entanglement

The density operator ρ ∈ S(HA ⊗ HB ) is said to be separable if it can be written as a 
statistical mixture of product states:

2.5. COMPOSITE QUANTUM SYSTEMS 21

be observed separately performing local measurements. Conversely, single quantum
systems can be combined to form composite systems. For example, a hydrogen atom
is a composite quantum system made by two quantum particles: a proton and an
electron.

In quantummechanics, composite systems are described in tensor product Hilbert
spaces. Let SA and SB be quantum systems described in HA and HB respectively.
The composite system SA+SB made by SA and SB is described in the Hilbert space:

H = HA ⊗ HB.

Given a quantum state ρ ∈ B(H), we can calculate the partial trace of ρ with respect
to HB (HA) to obtain the corresponding reduced state of the quantum system SA

(SB). In fact, given an observable A that can be measured on the system SA, it can
be identified to the observable A ⊗ IHB for the composite system. Its expectation
value, on the state ρ of the composite system, is:

⟨A⟩ρ,SA = tr(ρ(A⊗ IHB)) = tr(trHB(ρ)A), (2.5.1)

thus the partial trace trHB(ρ) is the density matrix encoding the outcome statistic
of any observable that can be measured on SA.

Let |ψ⟩ ∈ HA and |ϕ⟩ ∈ HB be pure states. Then |ψ⟩ ⊗ |ϕ⟩ ∈ HA ⊗HB is a state
of the composite system SA + SB. However, an arbitrary pure state |Ψ⟩ ∈ HA ⊗HB

may be not a tensor product of two vectors but, in general, it is a linear combination
of tensor products. If |Ψ⟩ ∈ HA ⊗ HB is in the product form:

|Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ |ψ⟩ ∈ HA, |ϕ⟩ ∈ HB, (2.5.2)

then it is called separable, otherwise it is called entangled. If the pure state of
SA+SB is separable then the subsystems are uncorrelated and each of them presents
a well-defined state. On the other hand if the state is entangled the system are
correlated within a quantum superposition. We can give the more general definition
of entanglement in terms of density operators.

Definition 2.5.1 The density operator ρ ∈ S(HA ⊗ HB) is said to be separable
if it can be written as a statistical mixture of product states:

ρ =
∑

i

λiρ
(A)
i ⊗ ρ(B)

i , (2.5.3)

where λi ≥ 0 and
∑

i λi = 1, ρ(A)
i ∈ S(HA) and ρ(B)

i ∈ S(HB) ∀i. Otherwise it is
said to be entangled.

where   and . Otherwise it is said to be entangled. λi ≥ 0 ∑
i

λi = 1



Example:   

Rx(x)W (✓) (495)

W (✓)Rx(x) (496)

| i =
1
p
2
(|00i+ |11i) (497)

⇢ = | ih | =
1

2
(|00ih00|+ |00ih11|+ |11ih00|+ |11ih11|) (498)

⇢ =

0

BB@

1

2
0 0 1

2

0 0 0 0
0 0 0 0
1

2
0 0 1

2

1

CCA (499)

⇢1 =

✓
1

2
0

0 1

2

◆
(500)

|00ih00| =

✓
1 0
0 0

◆
, |00ih11| =

✓
0 0
0 1

◆
(501)

|11ih00| =

✓
0 0
1 0

◆
, |11ih11| =

✓
0 0
0 1

◆
(502)

⇢ =
1

2

0

BB@

1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

CCA (503)

| i = a|00i+ b|01i+ c|10i+ d|11i (504)

⇢ = | ih | = |a|2|00ih00|+ ab⇤|00ih01|+ ac⇤|00ih10|+ ad⇤|00ih11|+ a⇤b|01ih00|+ |b|2|01ih01|+ bc⇤|01ih10|+ bd⇤|01ih11|+ a⇤c|10ih00|+ b⇤c|10ih01|+ |c|2|10ih10|+ cd⇤|10ih11|+ a⇤d|11ih00|+ b⇤d|11ih01|+ c⇤d|11ih10|+ |d|2|11ih11|(505)

⇤⇢ = | ih | = (a|00i+ b|01i+ c|10i+ d|11i)(a⇤h00|+ b⇤h01|+ c⇤h10|+ d⇤h11|)(506)

⇢ = | ih | = (a|00i+ b|01i+ c|10i+ d|11i)(a⇤h00|+ b⇤h01|+ c⇤h10|+ d⇤h11|)

⇢ =

0

BB@

a2 ab ac ad
ba b2 bc bd
ca cb c2 cd
da db dc d2

1

CCA (507)

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

35
Assume the Bell state could be written into product of two states

Bell state

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

36

Condition for Bell state:

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

36

doesnt work

both conditions cant hold 

Bell state cant be written as product
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Let’s reconsider the phenomenological evidence list:

Randomness of measurement outcomes:  
The possible experimental values of the observable A are the element of its 
spectrum σ(A). 

Given a pure state |ψ⟩ ∈ H, the probability of measuring the value a ∈ σ(A) is: 


where {Pa}a∈σ(A) is the spectral measure or projection value measure (PVM) of A. If 
we consider repeated measurements of the observable A in the same physical 
conditions represented by the state |ψ⟩, the expectation value of A on the state |ψ⟩ is 
the mean of the outcomes: 


2.3. QUANTUM STATES AND OBSERVABLES 17

(2.3.10). This phenomenon is called decoherence and corresponds to an informa-
tion loss of the initial state.

Now let us reconsider the three phenomenological evidences listed in section
2.1 in terms of the three postulates of the mathematical construction of quantum
mechanics:

• Randomness of measurement outcomes : The possible experimental values of
the observable A are the element of its spectrum σ(A).

Given a pure state |ψ⟩ ∈ H, the probability of measuring the value a ∈ σ(A)
is:

Pψ(a) = ⟨ψ|Paψ⟩, (2.3.11)

where {Pa}a∈σ(A) is the spectral measure of A. If we consider repeated mea-
surements of the observable A in the same physical conditions represented by
the state |ψ⟩, the expectation value of A on the state |ψ⟩ is the mean of the
outcomes:

⟨A⟩ψ :=
∑

a∈σ(A)

aPψ(a) = ⟨ψ|Aψ⟩. (2.3.12)

In the case of a mixed state ρ we have the straightforward generalizations:

Pρ(a) = tr(Paρ) and ⟨A⟩ρ = tr(Aρ). (2.3.13)

• Post-measurement state: Let |ψ⟩ ∈ H be the state of the considered quantum
system. If we perform a measurement process of A with outcome a ∈ σ(A),
then the state of the system, after the measurement, is:

|ψa⟩ =
Pa|ψ⟩√
⟨ψ|Paψ⟩

. (2.3.14)

In the case of a mixed state ρ, the post-measurement state is:

ρa =
PaρPa

tr(Paρ)
. (2.3.15)

Since the pure state (2.3.14) is an eigenvector of A, in quantum mechanics it
is called eigenstate of the observable A.
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Post-measurement state: Let |ψ⟩ ∈ H be the state of the considered quantum system. 
If we perform a measurement process of A with outcome a ∈ σ(A), then the state of 
the system, after the measurement, is: 


2.3. QUANTUM STATES AND OBSERVABLES 17

(2.3.10). This phenomenon is called decoherence and corresponds to an informa-
tion loss of the initial state.

Now let us reconsider the three phenomenological evidences listed in section
2.1 in terms of the three postulates of the mathematical construction of quantum
mechanics:

• Randomness of measurement outcomes : The possible experimental values of
the observable A are the element of its spectrum σ(A).

Given a pure state |ψ⟩ ∈ H, the probability of measuring the value a ∈ σ(A)
is:

Pψ(a) = ⟨ψ|Paψ⟩, (2.3.11)

where {Pa}a∈σ(A) is the spectral measure of A. If we consider repeated mea-
surements of the observable A in the same physical conditions represented by
the state |ψ⟩, the expectation value of A on the state |ψ⟩ is the mean of the
outcomes:

⟨A⟩ψ :=
∑

a∈σ(A)

aPψ(a) = ⟨ψ|Aψ⟩. (2.3.12)

In the case of a mixed state ρ we have the straightforward generalizations:

Pρ(a) = tr(Paρ) and ⟨A⟩ρ = tr(Aρ). (2.3.13)

• Post-measurement state: Let |ψ⟩ ∈ H be the state of the considered quantum
system. If we perform a measurement process of A with outcome a ∈ σ(A),
then the state of the system, after the measurement, is:

|ψa⟩ =
Pa|ψ⟩√
⟨ψ|Paψ⟩

. (2.3.14)

In the case of a mixed state ρ, the post-measurement state is:

ρa =
PaρPa

tr(Paρ)
. (2.3.15)

Since the pure state (2.3.14) is an eigenvector of A, in quantum mechanics it
is called eigenstate of the observable A.

In the presented mathematical formulation of quantum mechanics the 
measurement process of the observable A is completely described by the PVM 
{Pa}a∈σ(A) which determines the probability distribution of the outcomes and the 
post-measurement state.
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Compatible and incompatible observables: A and B are compatible when they commute: 


18 CHAPTER 2. BASICS OF QUANTUM MECHANICS

• Compatible and incompatible observables : A and B are compatible when they
commute:

[A,B] := AB − BA = 0, (2.3.16)

in this case: PA
a P

B
b = PB

b PA
a ∀a ∈ σ(A) and ∀b ∈ σ(B), so the following

probability is well-defined:

Pψ(A = a ∧B = b) = ⟨ψ|PA
a P

B
b ψ⟩ = ⟨ψ|PB

b PA
a ψ⟩. (2.3.17)

Pψ(A = a ∧ B = b) is the joint probability of measuring the value a of the ob-
servable A and the value b of the observable B when the system is in the state
|ψ⟩. Conversely, if [A,B] ̸= 0 then we have not a well-defined joint probability
Pψ(A = a ∧ B = b), this fact is consistent with the phenomenological evidence
that A and B cannot be simultaneously measured. Moreover, let us remark that
in the presented mathematical formulation of quantum mechanics the measurement
process of the observable A is completely described by the PVM {Pa}a∈σ(A) which
determines the probability distribution of the outcomes and the post-measurement
state.

Example 2.3.2 Let us reconsider the example 2.1.1. An electron admits a triple
of observables called components of spin (Sx, Sy, Sz). If an electron is described in
the frame of reference where it is at rest3 then the associated Hilbert space is H ≃ C2.
The spin-operators are defined by:

Sx,y,z :=
!
2
σx,y,z , (2.3.18)

where σx,y,z are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.3.19)

If we measure the ẑ-component of the spin, the two possible outcomes are the eigen-
values of Sz: +

!
2 and −!

2 .
Since:

[σi, σj] = 2iϵijkσk, (2.3.20)

3In another frame of reference we must consider the kinetic degrees of freedom to specify the
state of the electron, in that case we need an infinite-dimensional Hilbert space.
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|0⟩

|1⟩

|ψ⟩

ϕ

θ

Apply Unitary rotation :U3 |0⟩ U3(θ, ϕ, λ) =
cos( θ

2 ) −eiλ sin( θ
2 )

eiϕ sin( θ
2 ) ei(ϕ+λ) cos( θ

2 )

Measure |0⟩

|1⟩

|0⟩

|1⟩

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ =
cos θ

2

sin θ
2 eiϕ

Prob( |0⟩) = (cos θ
2 )2

Prob( |1⟩) = (eiϕ sin θ
2 )2

Rotation about the Bloch Sphere and state parametrisation

Extending this to a system of  qubits forms a -dimensional Hilbert SpaceN 2N
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Quantum dynamics
The time evolution of an isolated quantum system is mathematically described by a 
one-parameter group of unitary operators {Ut}t∈R defined by: 
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where ϵijk is the Levi-Civita symbol:

ϵijk =

⎧
⎨

⎩

1 if (i, j, k) is an even permutation of (x, y, z)
−1 if (i, j, k) is an odd permutation of (x, y, z)
0 if there are repeated indexes

(2.3.21)

then Si and Sj are incompatible quantities when i ̸= j. Pauli matrices are also
used to describe the polarization of a photon. The states of vertical and horizontal
polarization (with respect to the z-axis) of a photon are eigenstates of the observable
rectilinear polarization described by the Pauli matrix σz:

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)
. (2.3.22)

Similarly diagonal polarization is described by the Pauli matrix σx, with eigenstates:

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

. (2.3.23)

Finally circular polarization is described by Pauli matrix σy whose eigenvectors are:

|L⟩ = 1√
2

(
1
i

)
|R⟩ = 1√

2

(
1
−i

)
(2.3.24)

|L⟩ and |R⟩ are called left polarization state and right polarization state respectively.

2.4 Quantum dynamics

The time evolution of an isolated4 quantum system is mathematically described by
a one-parameter group of unitary operators {Ut}t∈R defined by:

Ut :=
∑

λ∈σ(H)

e−i t!λPh ≡ e−i t!H, (2.4.1)

where ! is the reduced Planck constant, H is the Hamiltonian operator which rep-
resents the observable total energy of the considered system and {Ph}h∈σ(H) is the
spectral measure of H.

4The considered quantum system is assumed to be non-interacting with the environment. The
notion of open system is introduced in the next section.

where    is the reduced Planck constant, H is the Hamiltonian operator which rep- 
resents the observable total energy of the considered system and {Ph}h∈σ(H) is the 
spectral measure of H. 
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If the state at time t = 0 is |ψ0⟩ ∈ H then the state at time t > 0 is:  

Taking the time derivative obtains the Schroedinger equation: 


In case of a time-dependent Hamiltonian, H must be replaced by a one-parameter family of 
self-adjoint operators {H(t)}t∈R and the Schroedinger equation assumes the form: 
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Example 2.4.1 Given an inertial frame of reference, the Hamiltonian of an elec-
tron at rest in a magnetic field B= (Bx, By, Bz) is:

H = −γ σ ·B,

where γ > 0 and σ = (σx, σy, σz).

If the state at time t = 0 is |ψ0⟩ ∈ H then the state at time t > 0 is:

|ψt⟩ = Ut|ψ0⟩ = e−i t!H|ψ0⟩, (2.4.2)

Taking the time derivative of equation (2.4.2), one obtains the Schrödinger equation:

i! d

dt
|ψt⟩ = H|ψt⟩, (2.4.3)

that is the equation of motion of a quantum system with Hamiltonian H. In case
of a time-dependent Hamiltonian, H must be replaced by a one-parameter family
of self-adjoint operators {H(t)}t∈R and the Schrödinger equation assumes the form:

i! d

dt
|ψt⟩ = H(t)|ψt⟩. (2.4.4)

In particular, equation (2.4.4) is crucial to formulate the adiabatic theorem which is
the basis of Adiabatic Quantum Computing as discussed in section 3.4, providing a
universal model for quantum computation alternative to quantum circuits.

More generally, if the state of the system at t = 0 is a mixed state ρ0, its time
evolution is described by:

ρt = Utρ0U
†
t , (2.4.5)

from which one obtains the equation of motion for mixed states:

i! d

dt
ρt = [H, ρt], (2.4.6)

called Liouville-von Neumann equation. If the initial state ρ0 is a pure state then
(2.4.6) corresponds to (2.4.3).

2.5 Composite quantum systems

There are quantum systems, called composite quantum systems, presenting an inter-
nal structure so that one distinguishes in them two or more subsystems which can
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Hamiltonian simulation

Recall Schroedinger Equation and time evolution equation

Pauli Operators

|ψ(t)⟩ = Û(t) |ψ(0)⟩ → ∂Û(t)
∂t

= − iHÛ(t) → Û(t) = e−iHt

If  (Hermitian) then  is unitary 
 

 

H = H† Û(t)
e−iHteiHt = 1 and e−iHt = (eiHt)†

e−iHt =
∞

∑
j=0

(−iHt) j

j!
[2111.00627]
[2301.00560]

Tensor products of Pauli operators {I, X, Y, Z} form a basis for the vector 
space of 2^n x 2^n complex matrices, which are used to represent 
quantum states and operators in a system of n qubits.  
Thus, our hermitian matrix H can be decomposed into Pauli operators 

[Theorem of Stone]
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Trotterisation

For commuting self-adjoint operators                we find

However, if S and T do not commute this doesnt hold.  
Surprisingly the Trotter Product Formula comes to the rescue:

Consequently

If N too large causes numerical instabilities, but must be 
sufficiently large

Trotterization error, important error for quantum algorithms 
(Hamiltonian simulation, time evolution etc)
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Trotterization tells us the error we make when writing  as 
a sum of 

H
Hi

for

Thus we implement an approximated time evolution where the 
 are compositions of Pauli matricesHi

Each piece remains unitary, and  is hermitianHi

Task is to convert each piece into gate operations
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Trotterization error needs to be assessed, e.g. by reducing time steps
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From QM to QFT

• Extend QM to systems with variable particle numbers (quantum many-body problems)

• Promote classical fields to operator-valued functions, acting on states in Fock space

ℱ =
∞

⨁
n=0

ℋ⊗n
• Second Quantisation Programme

∗ Interaction Term:

Ĥint =
1

2

Z
d
3
x d

3
x
0
 ̂
†(x) ̂†(x0)V (x� x0) ̂(x0) ̂(x)

∗ Total Hamiltonian: Ĥ = Ĥ0 + Ĥint

– Advantages:
∗ Simplifies treatment of many-body systems.

∗ Naturally incorporates quantum statistics (bosons and fermions).

∗ Allows for particle creation and annihilation processes.

• Heisenberg Equation for Field Operators:

i~ @
@t
 ̂(x, t) = [ ̂(x, t), Ĥ]

• Time Evolution Operator:

| (t)i = Û(t, t0)| (t0)i, Û(t, t0) = T exp

✓
� i

~

Z
t

t0

Ĥ(t0)dt0
◆

• Interaction Picture:

– Split Hamiltonian: Ĥ = Ĥ0 + Ĥint

– Operators and States:
∗ Field operators evolve with Ĥ0:

 ̂I(x, t) = e
iĤ0(t�t0)/~ ̂S(x)e

�iĤ0(t�t0)/~

∗ States evolve with Ĥint:

| (t)iI = ÛI(t, t0)| (t0)iI

– Dyson Series Expansion:

ÛI(t, t0) = T exp

✓
� i

~

Z
t

t0

Ĥint(t
0)dt0

◆

– Time-Ordered Exponential:
∗ Accounts for non-commuting operators at different times.

∗ Essential for calculating physical processes in QFT.

18

• Time Evolution Operator:

➡ One usually works in the Schroedinger 
picture (states are time-dependent and 
operators are time-independent (unless 
they are explicitly time-dependent))


➡ Latticisation, Kogut-Susskind programme

➡ Interaction picture (split Hamiltonian 
into free and interaction H)


➡ define Dyson series: perturbative 
expansion, suitable if coupling is small


➡ Wick contractions, Feynman diagrams

➡ S-Matrix, LSZ theorem

perturbative approach non-perturbative approach

e.g. scatting in weak coupling regime e.g. Real-time time evolution suitable 
for large couplings



The infamous sign problem

• Sign problem - profound challenge for simulation of field theories

• Can arise in presence of chemical 
potential, topological terms, multi-
particle dynamics, …

• Example chemical potential μψ̄γ0ψ

Z = ∫ 𝒟ψ̄𝒟ψ𝒟A e−S[ψ̄,ψ,A]

S = ∫
1/T

0
dτ∫ d3x [ψ̄ (γμDμ + m)ψ + 1

4 Fa
μνFaμν + μψ̄γ0ψ]

(partition function)

and integration over fermion fields and 
Wick rotation (imaginary time)

Z = ∫ 𝒟Ae−Sgauge[A] ⋅ det(γμDμ + m + μγ4) For  complex phases don’t cancelμ ≠ 0

Why Hamiltonian simulation?
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•  Importance sampling
Interpretation of 

as probability weight

• Highly oscillatory integrands

near cancellation of pos and neg contribs

e−Sgauge det(M)

⟨O⟩ =
∫ 𝒟Ae−Sgauge O | det[M(A)] |eiϕ(A)

∫ 𝒟Ae−Sgauge | det[M(A)] |eiϕ(A)

[de Forcrand ’10]

The infamous sign problem
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HEP application focused quantum simulations

• Real-time evolution on quantum computer 
can avoid sign problem

[Kogut, Susskind ’74]

• Continuous field theories 
describe particle phenomenology

ϕ(x) ->
infinite dimensional ‘matrices’

⟨X(T ) U(T, − T ) pp(−T )⟩
2

• Needs discretisation 
irrespective of classical 
or quantum computation

Kogut-Susskind 
formulation
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Steps to Hamiltonian Simulation on the lattice (Kogut-Susskind)

We consider a non-Abelian gauge theory with fermionic matter fields. The gauge group 
is general and denoted as SU(N )

�HHH (153)

HWLWL (154)

HZ� (155)

�i ⇠ g
2
d

(156)

tt̄ (157)

tt̄j (158)

�
A!ff̄

⇠ �f (159)

�
H!ff̄

⇠ �
3
f

(160)

1 Introduction

In this document, we provide a step-by-step construction of a lattice field theory for Hamiltonian simulation

using the Kogut-Susskind method. This approach is essential for studying non-perturbative aspects of gauge

theories, such as Quantum Chromodynamics (QCD), by discretizing space while keeping time continuous.

2 The Continuous Lagrangian Field Theory

2.1 Choosing a Gauge Theory
We consider a non-Abelian gauge theory with fermionic matter fields. The gauge group is general and

denoted as SU(N).

2.2 Lagrangian Density
The Lagrangian density L is given by:

L = �1

4
F

a

µ⌫
F

µ⌫a +  ̄ (i�µDµ �m) (161)

where:

• F
a

µ⌫
: Field strength tensor.

•  : Fermion field.

• Dµ: Covariant derivative.

• m: Fermion mass.

• �
µ
: Gamma matrices satisfying the Clifford algebra.

9

The Lagrangian density is given by

where:

: Field strength tensorFa
μν

: Fermion fieldψ

: Covariant derivativeDψ

: Fermion massm

 : Gamma matrices satisfying Clifford algebraγμ2.3 Field Strength Tensor
The field strength tensor F

a

µ⌫
is defined as:

F
a

µ⌫
= @µA

a

⌫
� @⌫A

a

µ
+ gf

abc
A

b

µ
A

c

⌫
(162)

where:

• A
a

µ
: Gauge field.

• g: Coupling constant.

• f
abc

: Structure constants of the gauge group.

2.4 Covariant Derivative
The covariant derivative Dµ acting on the fermion field is:

Dµ =
�
@µ � igT

a
A

a

µ

�
 (163)

where T
a

are the generators of the gauge group in the representation appropriate for  .

3 Deriving the Hamiltonian Density

To construct the Hamiltonian, we perform a Legendre transformation.

3.1 Canonical Conjugate Momenta
Gauge Fields A

a

µ
:

⇡
aµ =

@L
@(@0Aa

µ
)
= �F

0µa
(164)

Spatial Components (µ = i):

⇡
ai = �F

0ia = E
ia

(165)

where E
ia

are the electric field components.

Temporal Component (µ = 0):

⇡
a0 = 0 (166)

Fermion Fields  and  ̄:
For  :

⇡ =
@L

@(@0 )
= i 

†
(167)

For  ̄:

⇡
 ̄
= 0 (168)

3.2 Legendre Transformation
The Hamiltonian density H is:

H = ⇡
aµ
@0A

a

µ
+ ⇡ @0 � L (169)

10

2.3 Field Strength Tensor
The field strength tensor F

a

µ⌫
is defined as:

F
a

µ⌫
= @µA

a

⌫
� @⌫A

a

µ
+ gf

abc
A

b

µ
A

c

⌫
(162)

where:

• A
a

µ
: Gauge field.

• g: Coupling constant.

• f
abc

: Structure constants of the gauge group.

2.4 Covariant Derivative
The covariant derivative Dµ acting on the fermion field is:

Dµ =
�
@µ � igT

a
A

a

µ

�
 (163)

where T
a

are the generators of the gauge group in the representation appropriate for  .

3 Deriving the Hamiltonian Density

To construct the Hamiltonian, we perform a Legendre transformation.

3.1 Canonical Conjugate Momenta
Gauge Fields A

a

µ
:

⇡
aµ =

@L
@(@0Aa

µ
)
= �F

0µa
(164)

Spatial Components (µ = i):

⇡
ai = �F

0ia = E
ia

(165)

where E
ia

are the electric field components.

Temporal Component (µ = 0):

⇡
a0 = 0 (166)

Fermion Fields  and  ̄:
For  :

⇡ =
@L

@(@0 )
= i 

†
(167)

For  ̄:

⇡
 ̄
= 0 (168)

3.2 Legendre Transformation
The Hamiltonian density H is:

H = ⇡
aµ
@0A

a

µ
+ ⇡ @0 � L (169)

10

structure constant 
of gauge group

generators of 
gauge group
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Deriving the Hamiltonian density

Gauge fields :Aa
μ

2.3 Field Strength Tensor
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replace the  component in terms of conjugate momenta (Hamilton approach)∂0

4 Expressing @0 in Terms of Momenta

4.1 Gauge Fields
From the definition of ⇡

ai
:

⇡
ai = �F

0ia = �
�
@
0
A

ia � @
i
A

0a + gf
abc

A
0b
A

ic
�

(170)

Solving for @
0
A

ia
:

@
0
A

ia = �⇡ai �D
i
A

0a
(171)

where D
i
A

0a = @
i
A

0a � gf
abc

A
ib
A

0c
.

4.2 Fermion Fields
Using the Dirac equation:

@0 = �i (↵ ·D � �m) � gA
a

0T
a
 (172)

where ↵ and � are Dirac matrices.

5 Constructing the Hamiltonian Density

Substituting @0A
a

µ
and @0 into the Hamiltonian density, we get:

H = ⇡
ai
�
�⇡ai �D

i
A

0a
�
+ i 

† (�i (↵ ·D � �m) � gA
a

0T
a
 )� L (173)

=
1

2
⇡
ai
⇡
ai +

1

4
F

a

ij
F

ija +  
† (�i↵ ·D + �m) +A

a

0G
a

(174)

where the Gauss’s law operator is:

G
a = Di⇡

ai � g 
†
T

a
 (175)

6 Understanding Each Term

6.1 Electric Energy Term
1

2
⇡
ai
⇡
ai

(176)

Represents the energy stored in the electric field.

6.2 Magnetic Energy Term
1

4
F

a

ij
F

ija
(177)

Represents the energy stored in the magnetic field.

6.3 Fermion Energy Term
 
† (�i↵ ·D + �m) (178)

Includes the kinetic energy and mass of the fermions.
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Gauss’s law operator
Electric 

Energy Term
Magnetic 

Energy Term
Fermion 

Energy Term

Physical states  must satisfy  to ensure gauge invariance (Gauss’s law)Ψ⟩ Ga Ψ⟩ = 0

6.4 Gauss’s Law Constraint
A

a

0G
a

(179)

Enforces the gauge invariance of the theory.

7 Gauss’s Law and Gauge Invariance

7.1 Gauss’s Law Operator
G

a = Di⇡
ai � g 

†
T

a
 (180)

7.2 Physical States
Physical states | i must satisfy:

G
a| i = 0 (181)

This condition ensures gauge invariance by enforcing Gauss’s law.

8 Summary of the Continuous Hamiltonian

The Hamiltonian operator H is:

H =

Z
d
3
xH (182)

Where the Hamiltonian density H is:

H =
1

2
⇡
ai
⇡
ai +

1

4
F

a

ij
F

ija +  
† (�i↵ ·D + �m) +A

a

0G
a

(183)

9 Preparing for Lattice Discretization

Before discretization, consider:

• Constraints Handling: Treat A
a

0 as a Lagrange multiplier enforcing Gauss’s law.

• Quantization: Promote fields and their conjugate momenta to operators, imposing canonical (anti)commutation

relations.

• Discretization: Replace continuous space with a discrete lattice, carefully defining lattice variables.

10 Discretizing Space: Introducing the Lattice

10.1 Spatial Lattice
• Lattice Sites: Integer coordinates n = (nx, ny, nz).

• Lattice Spacing (a): Fixed distance between neighboring sites; serves as the ultraviolet cutoff.

10.2 Time Remains Continuous
Time remains continuous to retain the Hamiltonian formulation.

12
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Discretisising Space: Introducing the lattice

Spatial lattice: Lattice sites defined by integer coordinates n = (nx, ny, nz)

Lattice spacing defined by the value  (fixed distance between neighbouring sites)a

serves as UV cutoff

The time remains continuous to retain the Hamiltonian formulation

Link variables: When discretising a gauge theory onto a lattice, we replace the continuous space-
time with a discrete set of points (sites). The gauge fields , which live on 
continuous space-time, need to be represented in a way that preserves gauge 
invariance on the lattice  
-> variables  are introduced such that they maintain gauge invariance

Aμ(x)

U

11 Defining Lattice Variables

11.1 Gauge Fields: Link Variables
Link Variables Ui(n):

Ui(n) = e
iagA

a

i
(n)Ta

(184)

Represents the parallel transporter from site n to n+ î.

11.2 Fermion Fields: Site Variables
Fermion Fields  (n): Placed at the lattice sites, representing the matter fields at each point.

12 Discretizing the Hamiltonian

We discretize each term of the continuous Hamiltonian while maintaining gauge invariance.

12.1 Electric Energy Term

HE =
g
2

2

X

n,i,a

[Ea

i
(n)]2 (185)

12.2 Magnetic Energy Term
Plaquette Variables Uij(n):

Uij(n) = Ui(n)Uj(n+ î)U†
i
(n+ ĵ)U †

j
(n) (186)

Discretized Magnetic Energy Term:

HB =
1

g2

X

n,i<j

[Nc � Re Tr (Uij(n))] (187)

where Nc is the number of colors.

12.3 Fermion Energy Term
Kinetic Term:

HK =
1

2a

X

n,i

h
 
†(n)↵i

Ui(n) (n+ î)�  
†(n+ î)↵i

U
†
i
(n) (n)

i
(188)

Mass Term:

HM = m

X

n

 
†(n)� (n) (189)

Total Fermion Hamiltonian:

HF = HK +HM (190)

13

defined as

The link variable    represents the parallel transporter (also known as the 
Wilson line) along the link from site   to site  . It encodes the phase 
factor acquired by a particle moving through the gauge field along that link.

Ui(n)
n n + ̂i

Fermion Fields:  placed at the lattice sites, representing matter fields at each space pointψ(n)
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Define plaquette operator Uμν(n) = Uμ(n)Uν(n + ̂μ)U†
μ(n + ̂ν)U†

ν (n)

The plaquette operator is a measure of the curvature (field strength) 
of the gauge field over the area of the plaquette. In the limit of small 
lattice spacing ,  approximates the exponential of the field 
strength tensor integrated over the plaquette area.

a Uμν(n)

For small  we have a Uμ(n) = eiagAa
μ(n)Ta ≃ 1 + iagAa

μ(n)Ta − a2g2

2 (Aa
μ(n)Ta)2 + 𝒪(a3)

Uμν(n) = (1 + iagAa
μ(n)Ta) (1 + iagAb

ν (n + ̂μ)Tb)
× (1 − iagAc

μ(n + ̂ν)Tc) (1 − iagAd
ν (n)Td) + 𝒪(a3)

= 1 + ia2gFa
μν(n)Ta + 𝒪(a3)

Calculating the plaquette for small a

with Ab
ν (n + ̂μ) = Ab

ν (n) + a∂μAb
ν (n) + 𝒪(a2)

With the plaquette we can express the latticised magnetic energy term  as the 
trace over the plaquete:

HB

HB = 1
g2 ∑

n,i<j
(Nc − Re Tr [Uij(n)]) ≈ a4

2 ∑
n,i<j

Fa
ij(n)Fa

ij(n)

gauge invariant quantity
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11 Defining Lattice Variables

11.1 Gauge Fields: Link Variables
Link Variables Ui(n):

Ui(n) = e
iagA

a

i
(n)Ta

(184)

Represents the parallel transporter from site n to n+ î.

11.2 Fermion Fields: Site Variables
Fermion Fields  (n): Placed at the lattice sites, representing the matter fields at each point.

12 Discretizing the Hamiltonian

We discretize each term of the continuous Hamiltonian while maintaining gauge invariance.

12.1 Electric Energy Term

HE =
g
2

2
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[Ea

i
(n)]2 (185)

12.2 Magnetic Energy Term
Plaquette Variables Uij(n):
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i
(n+ ĵ)U †

j
(n) (186)
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where Nc is the number of colors.
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U
†
i
(n) (n)

i
(188)
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Total Fermion Hamiltonian:
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Mass term:
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Ensure gauge invariance of  on the latticeH

13 Ensuring Gauge Invariance on the Lattice

13.1 Local Gauge Transformations
At each site n:

Fermion Fields:

 (n) ! G(n) (n) (191)

Link Variables:

Ui(n) ! G(n)Ui(n)G
†(n+ î) (192)

where G(n) is an element of the gauge group at site n.

13.2 Gauge Invariance of the Hamiltonian Terms
• The electric energy term [Ea

i
(n)]2 is gauge invariant.

• The trace of the plaquette variable Tr (Uij(n)) is gauge invariant.

• The combination  
†(n)Ui(n) (n+ î) is gauge invariant.

14 Implementing Gauss’s Law on the Lattice

14.1 Gauss’s Law Operator
The discrete version is:

G
a(n) =

X

i

h
E

a

i
(n)� E

a

i
(n� î)

i
+ g 

†(n)T a
 (n) (193)

14.2 Physical Hilbert Space
Physical states must satisfy:

G
a(n)| i = 0 (194)

This condition enforces Gauss’s law on the lattice.

15 Addressing the Fermion Doubling Problem

15.1 The Issue
NaÃ¯ve discretization introduces extra fermion species (doublers) due to the periodicity of the lattice mo-

mentum space.

15.2 Kogut-Susskind (Staggered) Fermions
Objective: Reduce the number of fermion species by exploiting the lattice structure.

Implementation:

• Staggered Phases:
⌘i(n) = (�1)n1+n2+···+ni�1 (195)

• Modified Fermion Fields: Use single-component fermion fields �(n).
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group element at site n

Electric energy term  is gauge invariant[Ea
i (n)]2

Trace of plaquette variable  is gauge invariantTr[Uij(n)]

The combination  is gauge invariantψ†(n)Ui(n)ψ(n + ̂i )
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†(n+ î) (192)

where G(n) is an element of the gauge group at site n.

13.2 Gauge Invariance of the Hamiltonian Terms
• The electric energy term [Ea

i
(n)]2 is gauge invariant.

• The trace of the plaquette variable Tr (Uij(n)) is gauge invariant.

• The combination  
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The fermion doubling problem

Consider 

11 Defining Lattice Variables

11.1 Gauge Fields: Link Variables
Link Variables Ui(n):
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i
(n)Ta

(184)

Represents the parallel transporter from site n to n+ î.

11.2 Fermion Fields: Site Variables
Fermion Fields  (n): Placed at the lattice sites, representing the matter fields at each point.

12 Discretizing the Hamiltonian

We discretize each term of the continuous Hamiltonian while maintaining gauge invariance.

12.1 Electric Energy Term

HE =
g
2

2

X
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[Ea

i
(n)]2 (185)

12.2 Magnetic Energy Term
Plaquette Variables Uij(n):

Uij(n) = Ui(n)Uj(n+ î)U†
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(n+ ĵ)U †
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where Nc is the number of colors.

12.3 Fermion Energy Term
Kinetic Term:

HK =
1

2a

X

n,i

h
 
†(n)↵i

Ui(n) (n+ î)�  
†(n+ î)↵i

U
†
i
(n) (n)

i
(188)

Mass Term:
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X
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Total Fermion Hamiltonian:

HF = HK +HM (190)

13

for the free theory (i.e. no gauge interactions)  Ui(n) = 1

Fourier transforming , inserting into  and massaging the 

equation gives

ψ(n) = ∫
π
a

− π
a

ddp
(2π)d eip⋅naψ̃(p) HK

HK = ∫ ddp
(2π)d ψ̃†(p)[ 2iαi

a
sin(api)] ψ̃(p) = ∫ ddp

(2π)d ψ̃†(p) (α ⋅ K) ψ̃(p)

where K = 2
a

(sin(ap1), sin(ap2), sin(ap3))

-> the eigenvalues are given by E(p) = ± |K | = ± 2
a

d

∑
i=1

sin2(api)

the energy vanishes when , which occurs at  and sin(api) = 0 pi = 0 pi = π
a

Thus, there are  points in the Brillouin zone where . In four dims (d=4) there are 16 
such points, indicating 16 fermion species (including doublers)

2d E(p) = 0
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Introducing staggered fermions

To mitigate the fermion doubling problem, we introduce staggered fermions, which involve:

• Replacing the multi-component Dirac spinor  with a single-
component fermion field 

ψ(n)
χ(n)

• Redistributing the spinor components across neighbouring lattice 
sites using staggered phases ηi(n) = (−1)n1+n2+…+ni−1

The staggered fermion Hamiltonian (for  for simplicity) isUi(n) = 1

HF = 1
2a ∑

n,i
ηi(n)[χ†(n)χ(n + ̂i ) − χ†(n + ̂i )χ(n)] + m∑

n
χ†(n)χ(n)

After Fourier transform, one has 

HF = ∫ ddk
(2π)d χ̃†(k)[ 2i

a ∑
i

sin(aki) η̃i] χ̃(k) + m∫ ddk
(2π)d χ̃†(k)χ̃(k)

By distributing the spinor components across different lattice sites and introducing the 
staggered phases, the number of fermion species is reduced

While this doesn’t completely eliminate the fermion doubling problem, it significantly 
reduces the number of unphysical doublers.

• in d dimensions, the number of species reduces from  to 2d 2d/2

• In four dimensions, from 16 to 4
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Assembling the Lattice Hamiltonian

The total Hamiltonian is H = HE + HB + HF

Electric Energy Term

• Staggered Fermion Hamiltonian:

HF =
1

2a

X

n,i

⌘i(n)
h
�
†(n)Ui(n)�(n+ î)� �

†(n+ î)U †
i
(n)�(n)

i
+m

X

n

�
†(n)�(n) (196)

16 Commutation Relations on the Lattice

16.1 Gauge Fields and Electric Fields
Commutation Relations:

[Ea

i
(n), Uj(m)] = �ij�n,m (T a

Ui(n)) (197)

h
E

a

i
(n), U†

j
(m)

i
= ��ij�n,m

⇣
U

†
i
(n)T a

⌘
(198)

16.2 Fermion Fields
Anticommutation Relations:

�
�(n),�†(m)

 
= �n,m (199)

{�(n),�(m)} = 0 (200)

17 Assembling the Lattice Hamiltonian

The total Hamiltonian is:
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2

2

X
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Magnetic Energy Term
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15

Fermion Energy Term

(Staggered Fermions)

Numerical methods for Hamiltonian 
simulation:

• Tensor Network Approches

• Quantum Simulations
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Concrete example U(1) in 1-dimension

H =

0

BBBBBBBBBBBBBB@

H1,1 0 0 0 . . . H1,6 0 . . . 0
0 H2,2 0 0 . . . 0 H2,7 . . . 0
0 0 H3,3 0 . . . 0 0 . . . H3,9

0 0 0 H4,4 . . . 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.
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. . .
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.
.

H6,1 0 0 0 . . . H6,6 0 . . . H6,9
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.

.

.
.
.
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.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
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0 0 H9,3 0 . . . H9,6 0 . . . H9,9

1

CCCCCCCCCCCCCCA

Where:

Hi,j =

(
g
2

2 (E2
1 + E

2
2), if i = j (diagonal, electric field energy)

� i

2aU(n), if i 6= j (off-diagonal, fermion hopping)

17

The U(1) gauge field is continuous  and has to be truncatedU(n) = eiθ(n)

Truncate the Electric Field  - assume E(n) E(n) = − 1,0, + 1
Truncate the Link Variables  - e.g. assume U(n) θ(n) = 0, 2π

3 , 4π
3

Truncate fermions - assume single fermion mode per site, i.e. each site 
either 0 or 1 fermions

3 states for electric field on each site, thus 3 links => 3 × 3 = 9

Assume 2 sites 

each site 0 or 1 fermions x 2 sites => fermion Hilber space 22 = 4 } 36 x 36 
Hamiltonian| − 1, − 1⟩, | − 1, 0⟩, | − 1, + 1⟩, |0, − 1⟩, |0, 0⟩, |0, + 1⟩, | + 1, − 1⟩, | + 1, 0⟩, | + 1, + 1⟩

|0,0⟩, |0,1⟩, |1,0⟩, |1,1⟩

Thus, 36 basis states are labeled as |E0, E1; n0, n1⟩

Calculate elements Hij = ⟨E′ 0, E′ 1; n′ 0, n′ 1 |H |E0, E1; n0, n1⟩

with H = HE + HK + HM (  is absent in 1d)HB

diagonal element Hii = 1
2 (E2

0 + E2
1)

off-diagonal element Hij = − i
2 η(0)U(E0) δE′ 0,E0−1 δn′ 0,n0−1 δn′ 1,n1+1
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ϕn1
ϕn2 ϕn3 ϕn4

l
L = nLl

Hilbert space 
has dimension

 : # of digitised field valuesnϕ

 : # of lattice points per dimnL

 : # of dimensionsd
dim H = (nϕ)nd

L

• On quantum devices algorithms require exp less resources ln2[dim H]
[Jordan, Lee, Preskill ’12]

Hamiltonian simulation - what resources do we need?

Energy range: 1
nLl

< E < 1
l

➡ 

14 TeV 0.1 - 1 TeV 10 GeV 0.1 GeV

➡ 
Lattice 
sites

nd
L ≃ 1003

field 
digitisation

nϕ = 25
➡ 

Classical Quantum

32106

≃ ∞
5 ⋅ 106

Quantum computing not optional for Hamiltonian simulation
Effective Field Theories can ameliorate problem

• Discretisation of field ϕn(xk)
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Quantum Circuits
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Need transition form classical to quantum:

bits qubits

gates quantum 

gates 

algorithms 

Classical Quantum

quantum algorithms
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Single-Qubit Quantum Gates

Illustrative to write single-qubit operation as matrices

X-Gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

Quantum equivalent to classical NOT gate

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

Represented by matrix

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

concretely

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

It is unitary

Flips |0> to |1> and vice versa (hopping)
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Z-Gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

Represented by matrix

Action

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

-

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

Note, the X, Y and Z gates are represented by the Pauli matrices

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0⟩ #→ |1⟩, (3.38)

|1⟩ #→ |0⟩. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0⟩
results in the state |1⟩

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1⟩.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0⟩ and |1⟩ components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is

|0⟩ #→ 1√
2
(|0⟩ + |1⟩), (3.41)

|1⟩ #→ 1√
2
(|0⟩ − |1⟩). (3.42)

Eigenvalues +- 1
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• Compatible and incompatible observables : A and B are compatible when they
commute:

[A,B] := AB − BA = 0, (2.3.16)

in this case: PA
a P

B
b = PB

b PA
a ∀a ∈ σ(A) and ∀b ∈ σ(B), so the following

probability is well-defined:

Pψ(A = a ∧B = b) = ⟨ψ|PA
a P

B
b ψ⟩ = ⟨ψ|PB

b PA
a ψ⟩. (2.3.17)

Pψ(A = a ∧ B = b) is the joint probability of measuring the value a of the ob-
servable A and the value b of the observable B when the system is in the state
|ψ⟩. Conversely, if [A,B] ̸= 0 then we have not a well-defined joint probability
Pψ(A = a ∧ B = b), this fact is consistent with the phenomenological evidence
that A and B cannot be simultaneously measured. Moreover, let us remark that
in the presented mathematical formulation of quantum mechanics the measurement
process of the observable A is completely described by the PVM {Pa}a∈σ(A) which
determines the probability distribution of the outcomes and the post-measurement
state.

Example 2.3.2 Let us reconsider the example 2.1.1. An electron admits a triple
of observables called components of spin (Sx, Sy, Sz). If an electron is described in
the frame of reference where it is at rest3 then the associated Hilbert space is H ≃ C2.
The spin-operators are defined by:

Sx,y,z :=
!
2
σx,y,z , (2.3.18)

where σx,y,z are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.3.19)

If we measure the ẑ-component of the spin, the two possible outcomes are the eigen-
values of Sz: +

!
2 and −!

2 .
Since:

[σi, σj] = 2iϵijkσk, (2.3.20)

3In another frame of reference we must consider the kinetic degrees of freedom to specify the
state of the electron, in that case we need an infinite-dimensional Hilbert space.
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Hadamard gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ⟩ = α0|0⟩ + α1|1⟩ will be either |0⟩ with
probability |α0|2 or |1⟩ with probability |α1|2.
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0 1
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which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0⟩ and |1⟩ is
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(|0⟩ − |1⟩). (3.42)
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Table 3.3 Some useful single-qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation

X X

(
0 1
1 0

)

|1⟩⟨0| + |0⟩⟨1|

Y Y

(
0 −i
i 0

)

i |1⟩⟨0| − i |0⟩⟨1|

Z Z

(
1 0
0 −1

)

|1⟩⟨0| − |0⟩⟨1|

H H
1√
2

(
1 1
1 −1

)
1√
2
(|0⟩ + |1⟩)⟨0| + 1√

2
(|0⟩ − |1⟩)⟨1|

S S
1√
2

(
1 0
0 i

)
1√
2
|0⟩⟨0| + 1√

2
i |1⟩⟨1|

R R
1√
2

(
1 0
0 e(−iπ/4)

)
1√
2
|0⟩⟨0| + 1√

2
e(−iπ/4)|1⟩⟨1|

As has been made clear from the above expression, the role of H is to create super-
positions of qubits.

Of course, it is important to operate on more qubits at the same time as well.
The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of a
controlled gate. The state of a qubit is changed, based on the value of another, control,
qubit. In the case of theCNOTgate, theNOToperation (or X operation) is performed,
when the first qubit is in state |1⟩; otherwise, the second qubit is unchanged

|00⟩ %→ |00⟩, |01⟩ %→ |01⟩, |10⟩ %→ |11⟩, |11⟩ %→ |10⟩. (3.43)

Accordingly, the matrix representation of the CNOT gate is given by

CNOT =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

The CNOT gate (3.43) is a special case of a more general controlled U gate

|00⟩ %→ |00⟩, |01⟩ %→ |01⟩, |10⟩ %→ |1⟩U |0⟩, |11⟩ %→ |1⟩U |1⟩, (3.44)

where U is an arbitrary single-qubit unitary gate. For the CNOT, we obviously have
U = X . Any multiple qubit gate may be composed by a sequence of single-qubit
gates and CNOT gates [18]. In Table3.4, we summarise some useful multi-qubit
gates.

Matrix representation

Action:

3.2. QUANTUM CIRCUITS 29

be evaluated in these terms. Let us list the main quantum gates, the Hadamard
gate is a 1-qubit gate defined in matrix form with respect to the computational
basis {|0⟩, |1⟩} as follows:

H :=
1√
2

(
1 1
1 −1

)
, (3.2.1)

its graphical representation is:

H .

The Hadamard gate realizes a change of basis {|0⟩, |1⟩} $→ {|+⟩, |−⟩} of a 1-qubit
Hilbert space where |+⟩ and |−⟩ are defined in (2.3.23).

The 1-qubit gate that appends a relative phase in the input state, it is defined
by:

Pφ :=

(
1 0
0 eiφ

)
, (3.2.2)

where φ ∈ R, its graphical representation is:

Pφ .

The 1-qubits gates defined by S := Pπ/2 and T := Pπ/4 play a crucial role in defining
a universal set of quantum gates.

The following statement entails a characteristic decomposition of 1-qubit gates
that is crucial for constructing controlled quantum gates [CN00].

Proposition 3.2.2 For any 1-qubit gate U there exist unitary operators A,B,C
satisfying ABC = I and α ∈ R such that:

U = eiαAσxBσxC. (3.2.3)

The prototypical controlled operation is the controlled-NOT (CNOT). The CNOT
gate is a 2-qubit gate defined, with respect to the computational basis, by:

CNOT|x⟩|y⟩ := |x⟩|y ⊕ x⟩, x, y ∈ {0, 1}, (3.2.4)

so the first qubit controls the conditional action of a bit-flip on the second qubit, its
graphical representation is:

•

.

Phase gate: Matrix representation
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Summary of fixed 1-qubit gates:
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Table 3.3 Some useful single-qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation
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Y Y
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H H
1√
2
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)
1√
2
(|0⟩ + |1⟩)⟨0| + 1√

2
(|0⟩ − |1⟩)⟨1|

S S
1√
2

(
1 0
0 i
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1√
2
|0⟩⟨0| + 1√

2
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2

(
1 0
0 e(−iπ/4)
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1√
2
|0⟩⟨0| + 1√

2
e(−iπ/4)|1⟩⟨1|
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positions of qubits.
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The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of a
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qubit. In the case of theCNOTgate, theNOToperation (or X operation) is performed,
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E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

34

P3H Summer School         Lecture      Michael Spannowsky         October 2024                   54



Quantum gate can be parametrised

Pauli rotations:

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2 ) cos( θ2
2 ) −ei(−

θ1
2 + θ3

2 ) sin( θ2
2 )

ei(
θ1
2 − θ3

2 ) sin( θ2
2 ) ei(

θ1
2 + θ3

2 ) cos( θ2
2 )

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.
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Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:
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Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as
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which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.
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Measurement process
3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ⟩ =
α0|0⟩ + α1|1⟩ is represented by the projectors on the two possible eigenspaces P0 =
|0⟩⟨0| and P1 = |1⟩⟨1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ⟩⟨ψ|) = ⟨ψ|P0|ψ⟩ = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ⟩ ← P0|ψ⟩√⟨ψ|P0|ψ⟩ = |0⟩.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0⟩⟨0| − |1⟩⟨1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0⟩) and −1 (corresponding to the observation |1⟩). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation ⟨σz⟩ of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate ⟨σz⟩ with error ϵ can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ϵ, p + ϵ]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to ⟨σz⟩ = 0. The error ϵ can be calculated as

ϵ = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.
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(we know eigenvalues +1 for |0> and -1 for |1>)
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Fig. 3.6 Relationship
between the sample size S
and the mean value
p̄ = 1

S

∑S
i=1 si for different

errors ϵ for the Wilson score
interval of a Bernoulli
parameter estimation
problem as described in the
text

Fig. 3.7 Putting it all
together: the circuit diagram
illustrates the building
blocks of qubits, (possibly
parametrised) gates,
measurement and the
estimation of expectations
from the text

averaged. Figure3.7 illustrates this by combining the building blocks of gates, mea-
surements and classical averaging to one picture that we will make use of in later
sections.

3.2.5 Quantum Parallelism and Function Evaluation

As the first larger example of a quantum algorithm, we want to construct a quantum
logic circuit that evaluates a function f (x) (see also [17]). This simple algorithm
will already exhibit one of the salient features of quantum algorithms: quantum par-
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input and a single bit as output, i.e., a function with a one-bit domain and range,

f (x) : {0, 1} → {0, 1}.

Examples of such a function are the identity function
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where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ϵ to be at most

ϵ ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ϵ and z, we need O(ϵ−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ϵ = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ϵ = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ϵ = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ϵ ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ϵ2
√

z4(16ϵ2+1)
ϵ4 + z2

8ϵ2
. (3.55)

Again,weget a scaling of ϵ2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2( 1

2ϵ − 1). For ϵ = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically
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quantum processing: the circuit is run with S shots, and the results are classically

one needs samples

Overall might need a large number of shots on quantum computer

This needs to be taken into account when comparing quantum and 

classical computers in terms of speedups and quantum advantage

(suited for large s and p~0.5)
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The Bloch Sphere
3.2 Introduction to Quantum Computing 99

Fig. 3.4 The Bloch sphere
representation of a qubit

The inner product of |ψ1⟩ and |ψ2⟩ is therefore given by

⟨ψ1|ψ2⟩ = α∗
0β0 + α∗

1β1.

Of course, this is equivalent to the scalar or vector product of the two corresponding
amplitude vectors. Similarly, the outer product of two states can be compactly written
as

|ψ1⟩⟨ψ2| =
(

α0β∗
0 α0β∗

1
α1β∗

0 α1β∗
1

)
,

which is the outer product of the amplitude vectors.
According to Sect. 3.1.3.5, n unentangled qubits are described by a tensor product

of single qubits |q1⟩, . . . , |qn⟩,

|ψ⟩ = |q1⟩ ⊗ · · · ⊗ |qn⟩. (3.33)

If the qubits are entangled, state |ψ⟩ is no longer separable, and in the computational
basis it reads

|ψ⟩ = α0|0 . . . 00⟩ + α1|0 . . . 01⟩ + · · · + α2n−1|1 . . . 11⟩, (3.34)

withαi ∈ C, and
∑2n−1

i=0 |αi |2 = 1. Here, we introduce the common shorthand which
writes the tensor product |a⟩ ⊗ |b⟩ as |ab⟩. The basis {|0 . . . 00⟩, . . . , |1 . . . 11⟩} is
the computational basis for n qubits. Note that for some algorithms, the qubits are
divided into certain registers, which have different functions in the computation.

We will make heavy use of an elegant notation that summarises a Dirac vector in
computational basis as

98 3 Quantum Computing

⟨ψ| = α∗
0⟨0| + α∗

1⟨1|,

where ∗ denotes complex conjugation.
As discussed in the previous sections, such a Dirac vector has a vector represen-

tation, since K -dimensional, discrete Hilbert spaces are isomorphic to the space of
complex vectors CK . In vector notation, a general qubit is expressed as

α =
(

α0

α1

)
.

The Hermitian conjugate of this amplitude column vector is the transposed and
conjugated row vector

α† = (α∗
0,α

∗
1) ∈ C2. (3.31)

Furthermore, we can represent the two states |0⟩ and |1⟩ as the standard basis vectors
of the C2,

|0⟩ =
(
1
0

)
∈ C2,

|1⟩ =
(
0
1

)
∈ C2.

Vector notation can be very insightful to understand the effect of quantum gates.
However, as common in quantum computing, we will predominantly use Dirac nota-
tion.

It is sometimes useful to have a geometric representation of a qubit. A generic
qubit in the pure state (3.30) can be parametrised as

|ψ⟩ = e(iγ)
(
cos

θ

2
|0⟩ + e(iφ) sin

θ

2
|1⟩
)
,

where θ,φ and γ are real numbers with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The global phase
factor e(iγ) has no observable effect and will be omitted in the following. The angles
θ and φ have the obvious interpretation as spherical coordinates, so that the Hilbert
space vector |ψ⟩ can be visualised as the R3 vector (sin θ cosφ, sin θ sin φ, cosφ)
pointing from the origin to the surface of a ball, the so-called Bloch sphere. The
Bloch sphere is illustrated in Fig. 3.4.9

The Dirac notation allows also for a compact description of the inner product
of two vectors in Hilbert space that was introduced in Sect. 3.1.3.1. Consider, for
example, two vectors in C2, |ψ1⟩ = α0|0⟩ + α1|1⟩ and |ψ2⟩ = β0|0⟩ + β1|1⟩, with
αi ,βi ∈ C for i = 0, 1, |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. Since |0⟩, |1⟩ are
orthonormal, we have that

⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨0|1⟩ = ⟨1|0⟩ = 0. (3.32)

9 Adapted from https://tex.stackexchange.com/questions/345420/how-to-draw-a-bloch-sphere.
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Thus, with             single qubit can be

where a global imaginary phase has no measurable 
effect and can be omitted.

Since with 

one can find angles such that  

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

34

parametrised as
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2-qubit states

Are built by tensor products, each qubit can be in state |0> or in state |1> 

So, for two qubits we have four possibilities:

that we denote

or

We can have superposition as a generic state

with complex coefficients such that 
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2-qubit states

Furthermore, we can express the state as a vector

For which we find the inner products

A 2-qubit quantum gate is a unitary matrix U of size 4 x 4
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2-qubit gates
CNOT gate:

unitary matrix representation

In words: if the first qubit is |0> nothing changes. If it is |1> we flip 
the second bit (and first stays the same)  

Action:

As a gate:

• A set of gates that can approximate any quantum operation  
-> Universal quantum computer

Rotation gates                           + phase shift gate          + CNOTe.g.
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The CNOT gate is an extremely important gate

•  It realises conditional probabilities

•  It creates entanglement

•  It can copy classical information, because

•  Constructs other control gates

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2 ) cos( θ2
2 ) −ei(−

θ1
2 + θ3

2 ) sin( θ2
2 )

ei(
θ1
2 − θ3

2 ) sin( θ2
2 ) ei(

θ1
2 + θ3

2 ) cos( θ2
2 )

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.
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Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎟⎠

SWAP ××

⎛

⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎟⎠

T •
•

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0⟩2|0⟩1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0⟩2 ⊗ |0⟩1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0⟩2 ⊗ |0⟩1 +

1√
2
|1⟩2 ⊗ |0⟩1)

= 1√
2
(|0⟩2 ⊗ |0⟩1 + |1⟩2 ⊗ |1⟩1).

This state is also known as a Bell state.

read circuit from 
left to right

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎟⎠

SWAP ××

⎛

⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎟⎠

T •
•

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0⟩2|0⟩1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0⟩2 ⊗ |0⟩1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0⟩2 ⊗ |0⟩1 +

1√
2
|1⟩2 ⊗ |0⟩1)

= 1√
2
(|0⟩2 ⊗ |0⟩1 + |1⟩2 ⊗ |1⟩1).

This state is also known as a Bell state.

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎟⎠

SWAP ××

⎛

⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎟⎠

T •
•

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0⟩2|0⟩1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0⟩2 ⊗ |0⟩1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
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= 1√
2
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Bell state (fully entangled)
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N-qubit states

When we have n qubits, each of them can be in state |0> or |1>

Thus for n qubit states we have 2^n possibilities:

or simply

A generic state of the system will be

With complex coefficients, such that
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Suppose we have the N qubit state

If we measure all its qubits, we obtain:

• 0 with probability  and the new state will be 

• 1 with probability  and the new state will be 

• …

•           with probability  and the new state is

Completely analogous to 1 and 2 qubit situation but now with     
possibilities
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Example: Turning a Hamiltonian term into a gate

Recall 

Assume
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1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z ) X = HZH (517)
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H RZ(2t) H

36

(proof via CBH Formula)
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one finds

for the action on states we find

which can be written in matrix form as
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The Ising Model
• The Ising model is a fundamental mathematical model in statistical mechanics used to 

understand phase transitions and critical phenomena, particularly in ferromagnetic materials.  

• Originally proposed by Wilhelm Lenz 1920, extensively studied by his student Ernst Ising 1925 

• The model considers a lattice of spins in one of two states: up (+1) or down (−1). These spins 
represent magnetic dipole moments of atomic spins in material and interact with their nearest 
neighbours. -> Ferromagnetism, critical phenomena and phase transitions 

• Exact solutions in 1-D and 2-D (Onsager’s solution 1944) - no exact solution in 3-D (NP-hard)
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1 Introduction: The Ising Model Hamiltonian

The lattice Isiing model Hamiltonian describes a system of spins on a lattice, where each spin

interacts with its neighbours and possibly an external magnetic field. The Ising odel on a

d-dimensional lattice has the form

H = �

X

hi,ji

Ji,j �i�j � µ

X

i

hi �i, (1.1)

where Ji,j is the interaction strength between neighbouring spins i and j, hi, ji denotes the

sum over nearest-neighbour pairs of sites i and j, �i represents the spin at site i, where �i = ±1

(i.e. spin up or spin down in the classical Ising model), and h is an external magnetic field

applied uniformly across the lattice with magnetic moment µ. If J > 0 the iteraction is

ferromagnetic where neighbouring spins align; if J < 0 the interaction is antiferromagnetic

where neighbouring spins anti-align.

The Hamiltonian can be split into two parts, H = H1 +H2, where

H1 = �

X

hi,ji

Ji,j �i�j (1.2)

describes the spin-spin interactions between nearest-neighbours, and

– 1 –

Classical Ising Model:

magnetisationinteraction strength J

sum over neighbouring spins

H2 = �µ

X

i

hi �i, (1.3)

describes the interaction with an external field.

2 Quantum Mechanical Ising Model

To express the Ising Hamiltonian using a quantum mechanical description of spins, we must

now replace the classical spin variables � = ±1 with the respective Pauli matrices. Making

the assumption that the interactions between neighbouring sites is equal for every i and j,

and decomposing the magnetic field into transverse and longitudinal fields, the Hamiltonian

becomes

H = �J

X

hi,ji

�
z

i �
z

j � h

X

i

�
z

i � �

X

i

�
x

i . (2.1)

where h is now the longitudinal field (oriented along the z direction) and � is the transverse

field (oriented along the x direction).

If the value of the transverse-field strength, �, is zero, then the system is purely classical.

Therefore, at low values of � the system behaves similarly to the classical Ising model: The

spins will tend to (anti-)align in the z-direction depending on the value of J , forming (anti-

)ferromagnetic states. If the value f � is large, the transverse field dominates, and the spins

are likely to be in a superposition of states due to the �
x
in the transverse term. In the limit

J ⌧ h, the spins will all align in the x-direction, leading to a highly-disordered phase. At

the point where the interactions between neighbouring spins and the transverse field become

comparable, J ⇠ �, the Ising model can experience a phase transition between the ordered

and disordered regime.

2.1 Ising model in 1D:

In one-dimension, the Ising model describes a one-dimensional chain of N -spins,

H = �J

N�1X

i=1

�
z

i �
z

i+1 � �

NX

i=1

�
x

i , (2.2)

where here we have taken the value of the the longitudinal field h = 0.

We will use the one-dimensional Ising spin model in our example below where we will

simulate the real-time evolution of the model using Hamiltonian simulation.

3 Hamiltonian Simulation - Real-time evolution of H

To simulate the real-time evolution of a quantum system, we use the Schrödinger time-

evolution operator

Quantum Mechanical Ising Model:

transverse field

Real-time evolution

H2 = �µ

X

i

hi �i, (1.3)

describes the interaction with an external field.

2 Quantum Mechanical Ising Model

To express the Ising Hamiltonian using a quantum mechanical description of spins, we must

now replace the classical spin variables � = ±1 with the respective Pauli matrices. Making

the assumption that the interactions between neighbouring sites is equal for every i and j,

and decomposing the magnetic field into transverse and longitudinal fields, the Hamiltonian
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X
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�
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X
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�
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X

i

�
x

i . (2.1)

where h is now the longitudinal field (oriented along the z direction) and � is the transverse

field (oriented along the x direction).

If the value of the transverse-field strength, �, is zero, then the system is purely classical.

Therefore, at low values of � the system behaves similarly to the classical Ising model: The

spins will tend to (anti-)align in the z-direction depending on the value of J , forming (anti-

)ferromagnetic states. If the value f � is large, the transverse field dominates, and the spins

are likely to be in a superposition of states due to the �
x
in the transverse term. In the limit

J ⌧ h, the spins will all align in the x-direction, leading to a highly-disordered phase. At

the point where the interactions between neighbouring spins and the transverse field become

comparable, J ⇠ �, the Ising model can experience a phase transition between the ordered

and disordered regime.

2.1 Ising model in 1D:

In one-dimension, the Ising model describes a one-dimensional chain of N -spins,

H = �J

N�1X

i=1

�
z

i �
z

i+1 � �

NX

i=1

�
x

i , (2.2)

where here we have taken the value of the the longitudinal field h = 0.

We will use the one-dimensional Ising spin model in our example below where we will

simulate the real-time evolution of the model using Hamiltonian simulation.

3 Hamiltonian Simulation - Real-time evolution of H

To simulate the real-time evolution of a quantum system, we use the Schrödinger time-

evolution operator

withU(t) = e
�iHt

. (3.1)

Using this method avoids costly sign-problems experienced by Monte-Carlo approaches to

evolution of lattice modes in imaginary time. However, directly calculating the real-time

evolution of a Hamiltonian is quickly unfeasible on a classical device, as the required re-

sources grow exponentially with the number of lattice sites. Quantum computers have an

exponentially growing Hilbert space, and therefore can feasibly simulate lattice models in

real-time.

In this example, we wish to consider the real-time evolution of the Ising model with a

transverse-field in one dimension, as shown in Equation (2.2). However, we see that the two

terms in the Hamiltonian do not commute due to the Pauli-operator commutation relations,

[�j ,�k] = 2i "ijk�l. We must therefore construct an approximation of the full Hamiltonian

where the terms can be separated.

3.1 Trotter-Suzuki Decomposition

Expressing the Hamiltonian as a sum of non-commuting parts H =
P

i
Hi and using the

Zassenhaus formula, it is possible to separate the non-commuting terms in H by Trotter-

Suzuki decomposition, such that the time-evolution operation from Equation (3.1) is approx-

imated by

U(t) =

"
Y

i

e
�iHit/n

#
n

, (3.2)

up to an error O(t
2
/n), where n is a positive integer. The operator U(t) defines the so-called

Trotterised time-evolution, which divides the total evolution time, t, into n steps of time

�t = t/n. The total time evolution is then achieved by applying n Trotter steps, such that

the Trotterised time-evolution is exact in the limit n ! 1.

A single Trotter step for the real-time evolution of the one-dimensional Ising model from

Equation (2.2) is therefore

e
iJ�t�

z
i �

z
i+1 e

i��t�x
i . (3.3)

4 Hamiltonian Simulation on Quantum Computers

Now that the model has been constructed and Trotterised, we are ready to implement the

real-time evolution on a quantum device. To do so, we must first define a mapping to qubits.

4.1 Mapping to Qubits

In this example, we will us a qubit-based quantum computer to carry out the simulation.

Qubits are the natural representation of spin-1/2 particles. The qubit is represented by the

Bloch Sphere, as shown in Figure 1.

– 3 –

U(t) = e
�iHt
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Using this method avoids costly sign-problems experienced by Monte-Carlo approaches to

evolution of lattice modes in imaginary time. However, directly calculating the real-time

evolution of a Hamiltonian is quickly unfeasible on a classical device, as the required re-
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real-time.
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transverse-field in one dimension, as shown in Equation (2.2). However, we see that the two

terms in the Hamiltonian do not commute due to the Pauli-operator commutation relations,
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where the terms can be separated.

3.1 Trotter-Suzuki Decomposition

Expressing the Hamiltonian as a sum of non-commuting parts H =
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Trotterised time-evolution, which divides the total evolution time, t, into n steps of time

�t = t/n. The total time evolution is then achieved by applying n Trotter steps, such that

the Trotterised time-evolution is exact in the limit n ! 1.

A single Trotter step for the real-time evolution of the one-dimensional Ising model from

Equation (2.2) is therefore
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4 Hamiltonian Simulation on Quantum Computers

Now that the model has been constructed and Trotterised, we are ready to implement the

real-time evolution on a quantum device. To do so, we must first define a mapping to qubits.

4.1 Mapping to Qubits

In this example, we will us a qubit-based quantum computer to carry out the simulation.

Qubits are the natural representation of spin-1/2 particles. The qubit is represented by the

Bloch Sphere, as shown in Figure 1.

– 3 –

single trotter step
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Figure 1. The Bloch Sphere

Figure 2. Pauli-ZZ gate

A suitable basis for qubits is constructed from the Pauli-operator basis, (�
0
,�

x
,�

y
,�

z
).

Exponentials of the Pauli-operators are rotations on the qubit, and can be visualised as

rotations on the Bloch sphere around an axis. For example, the Rz gate corresponds to a

rotation about the z-axis and is described by

Rz

✓
✓

2

◆
= e

�i✓�x . (4.1)

4.2 Circuit decomposition for the 1D Ising Model

Conveniently, the Ising model is already written in the Pauli basis, and the Trotter step from

Equation (3.3) maps directly onto a qubit-based device. We will break this down into two

steps:

4.2.1 Nearest Neighbour Interaction: �J
P

i
�
z

i
�
z

i+1

The term decribes the interaction between two qubits in the 1D chain and is described by the

product of two Pauli-Z operators. This Pauli-ZZ operation, when exponentiated, corresponds

to a controlled-Z operation. An entangling operation between the two qubits. This can be

decomposed in a series of CNOT and Rz gates and is shown in Figure 2.

Notice that the argument of the Rz gate corresponds to the coe�cient of the �
z

i
�
z

i+1 term

in the exponent. The operation is a two-qubit operation, acting on qubits i and i+ 1.
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Assume system with 2 sites:

Figure 3. Pauli-X gate

Figure 4. Trotter Step for n=2 sites

4.2.2 Transverse Field: ��
P

i
�
x

i

The transverse-field term corresponds to a single-qubit Rx operation and is applied indepen-

dently to each qubit. For each qubit, one applies the operation

Rx(2� �t) = e
�i� �t�x . (4.2)

which can be expressed on a circuit as shown in Figure 3

5 Circuit decomposition for 1D Ising Hamiltonian on n = 2 sites

Putting all this together, the circuit is shown in Figure 4
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5 Circuit decomposition for 1D Ising Hamiltonian on n = 2 sites

Putting all this together, the circuit is shown in Figure 4
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2-site Ising model - one trotter step:

3-site Ising model - one trotter step:

open boundary conditions periodic boundary conditions

e−iJσ i
Zσ i+1

Z = controlled Z

simple  rotationRx

See hands-on session
 https://github.com/simon-j-williams/QCIsingModel_KIT/tree/main
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Examples of HEP usecases for Hamiltonian simulation

• Real-time evolution in QFTs: scattering processes, quark-gluon plasma 
formation, out-of-equilibrium dynamics

• Sign-problem in finite density QCD: QCD phase diagram at finite baryon 
density or nuclear matter in neutron 
stars

• Simulating Early Universe Physics: Phase transitions, reheating

• Neutrino Oscillations in Dense Media: Neutrino osciallations in supenovae, 
neutron stars or early universe 
environments

• Gauge theories in higher dimensions: Classically expensive. Extra dim models

• Topological QFTs: Chern-Simons theory and Chern-
Simons-like terms in SM
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Summary

• Quantum computing is a new computational paradigm with a high 
potential for computational improvements in many science areas

• Hamiltonian simulation is an active research area ideally suited 
to be executed on quantum devices

• It might be key to avoiding the so-called ‘sign problem’ and to 
obtain a quantum advantage in computations for fundamental physics

 https://github.com/simon-j-williams/QCIsingModel_KIT/tree/main

• Hands-on session:


