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1 The QCD infrared limits
The ratio between the amplitude for the process γ∗ → q q̄ g and that for the
process γ∗ → q q̄ can be written as

|MR|2

|MB |2
=

2g2SCF

Q2

x2
1 + x2

2 − ε (2− x1 − x2)
2

(1− x1) (1− x2)
, (1)

where
x1 =

2p1 · q
q2

x2 =
2p2 · q
q2

, (2)

p1, p2, p3 and q are the momenta of the quark, antiquark, gluon and photon,
respectively, and Q2 = q2. Since the ratio of the two phase spaces reads

dΦ3

dΦ2
=

(
Q2
)1−ε

dx1 dx2

(4π)
2−ε

Γ(1− ε)
[(1− x1) (1− x2) (x1 + x2 − 1)]

−ε
θ(x1) θ(x2)

× θ(2− x1 − x2) θ((1− x1) (1− x2) (x1 + x2 − 1)) , (3)

we can write the decay ratio

dKR =

∫
dΦ3 |MR|2∫
dΦ2 |MB |2

(4)

as

dKR =
(4π)

ε

Γ(1− ε)

αS

2π

CF

Q2ε
dx1 dx2

x2
1 + x2

2 − ε (2− x1 − x2)
2

(1− x1)
1+ε

(1− x2)
1+ε

(x1 + x2 − 1)
ε

× θ(x1) θ(x2) θ(2− x1 − x2) θ((1− x1) (1− x2) (x1 + x2 − 1)) .

(5)

We now want to study the limit where the momentum p3 of the gluon be-
comes collinear to the momentum p1 of the quark or the momentum p2 of the
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antiquark. The first limit is parametrized by (p1 + p3)
2 becoming much smaller

than the hard scale Q2 of the decay while being smaller than (p2 + p3)
2, which

is instead the small scale of the limit where the momentum of the gluon becomes
collinear to the momentum p2 of the antiquark. Since the condition

(p1 + p3)
2
< (p2 + p3)

2 (6)

is equivalent to the condition x1 < x2, we can exploit the symmetry of the
integrand under the exchange x1 ↔ x2 to rewrite dKR as

dKR = 2
(4π)

ε

Γ(1− ε)

αS

2π

CF

Q2ε
dx1 dx2

x2
1 + x2

2 − ε (2− x1 − x2)
2

(1− x1)
1+ε

(1− x2)
1+ε

(x1 + x2 − 1)
ε

× θ(x1) θ(x2) θ(2− x1 − x2) θ((1− x1) (1− x2) (x1 + x2 − 1))

× θ(x2 − x1) , (7)

such that we can study both the regions at the same time.

1.1 The Sudakov parametrization
In the collinear limit, it is useful to introduce the variable

t = (p1 + p3)
2 (8)

and parametrize the momenta p1, p2 and p3 as
p1 = z p̄1 +ApT +B p̄2

∣∣∣
p2 = C p̄2

∣∣∣
p3 = D p̄1 + E pT + F p̄2,

∣∣∣ (9)

where p̄1 and p̄2 are two massless vectors defined such that q = p̄1 + p̄2 and pT

is a vector orthogonal to both of them.

Exercise 1: Express the parameters A, B, C, D, E and F in term of z,
t, Q2 and |~pT|.

Solution: The values of the parameters A, B, C, D, E and F can be fixed by
imposing that p1 + p2 + p3 = q, p21 = p23 = 0 (p22 = 0 is automatically satisfied)
and (p1 + p3)

2
= t. We obtain
p1 = z p̄1 +

√
z (1− z) t

pT

|~pT|
+ (1− z)

t

Q2
p̄2

∣∣∣
p2 =

(
1− t

Q2

)
p̄2

∣∣∣
p3 = (1− z) p̄1 −

√
z (1− z) t

pT

|~pT|
+ z

t

Q2
p̄2.
∣∣∣

(10)
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1.2 The leading-power result
Substituting the expressions for p1, p2 and p3 found above in the definitions of
x1 and x2, we find

x1 = z + (1− z)
t

Q2
x2 = 1− t

Q2
. (11)

Exercise 2: Substitute the above expressions for x1 and x2 in the expression
for dKR and truncate it at leading power in the t/Q2 expansion. NB: Be careful
in the truncation: 1− z is not guaranteed to be much larger than t/Q2.

Solution: Using the above expressions for x1 and x2, we can rewrite dKR

as

dKR = 2
(4π)

ε

Γ(1− ε)

αS

2π
CF

dt

t1+ε

(
1− t

Q2

)−2ε
dz

zε (1− z)
1+ε

{
1 + z2

− 2
t

Q2
[1− z (1− z)] +

(
t

Q2

)2 [
1 + (1− z)

2
]
− ε

(
1− z + z

t

Q2

)2
}

× θ

(
(1− z)

(
1− t

Q2

)
− t

Q2

)
. (12)

Note that the other θ functions appearing in the expression for dKR constrain
the integration limits of t and z to be

0 <
t

Q2
< 1 0 < z < 1. (13)

If we are only interested in the t/Q2 leading power behavior of dKR, we can
truncate it as

dKR = 2
(4π)

ε

Γ(1− ε)

αS

2π

dt

t1+ε

{
dz

zε (1− z)
ε CF

[
1 + z2

1− z
− ε (1− z)

]
θ

(
1− z − t

Q2

)
+O

(
t

Q2

)}
. (14)

Note that the term 1− z− t/Q2 cannot be truncated because 1− z is not guar-
anteed to be much larger than t/Q2. In the above expression, we can recognize
the D-dimensional unregularized Altarelli-Parisi splitting function

Pqq(z) =
1 + z2

1− z
− ε (1− z) . (15)
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1.3 The integration over z

The leading power result obtained in the above section reads

dKR = 2
(4π)

ε

Γ(1− ε)

αS

2π

dt

t1+ε

{
dz

zε (1− z)
ε CF

[
1 + z2

1− z
− ε (1− z)

]
θ

(
1− z − t

Q2

)
+O

(
t

Q2

)}
. (16)

In order to integrate it over z, we start by writing its integral as

KR = 2
(4π)

ε

Γ(1− ε)

αS

2π

dt

t1+ε

[
K

(1)
R +K

(2)
R +O

(
t

Q2

)]
, (17)

where the two integrals K
(1)
R and K

(2)
R read respectively

K
(1)
R = 2CF

∫ 1

0

dz

zε (1− z)
1+ε θ

(
1− z − t

Q2

)
(18)

and
K

(2)
R = CF

∫ 1

0

dz

zε (1− z)
ε [−1− z − ε (1− z)] θ

(
1− z − t

Q2

)
. (19)

Exercise 3: Compute the integrals K
(1)
R and K

(2)
R and use the equation

1

x1−ε
=

δ(x)

ε
+ L0(x) + εL1(x) +O

(
ε2
)
, (20)

where

Ln(x) = lim
β→0+

[
logn x

x
θ(x− β) +

logn+1 β

n+ 1
δ(x− β)

]
=

(
logn x

x

)
+

, (21)

to expand KR up to the finite part in ε (at leading power in t/Q2).

Solution: The results for K
(1)
R and K

(2)
R read

K
(1)
R =

2CF

1− ε

(
1− t

Q2

)1−ε

2F1

(
1 + ε, 1− ε; 2− ε; 1− t

Q2

)
(22)

and

K
(2)
R = CF

(
1− t

Q2

)1−ε [
2F1

(
−1 + ε, 1− ε; 2− ε; 1− t

Q2

)
− 2

1− ε
2F1

(
ε, 1− ε; 2− ε; 1− t

Q2

)]
. (23)
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Using the properties of the hypergeometric functions, we can rewrite them as

K
(1)
R =

2CF

ε

(
1− t

Q2

)1−ε
[(

t

Q2

)−ε

2F1

(
1, 1− 2ε; 1− ε;

t

Q2

)

− Γ2(1− ε)

Γ(1− 2ε)
2F1

(
1− ε, 1 + ε; 1 + ε;

t

Q2

)]
(24)

and

K
(2)
R = CF

(
1− t

Q2

)1−ε [
−
(

t

Q2

)2−ε
1− ε

2− ε
2F1

(
1, 3− 2ε; 3− ε;

t

Q2

)
+

(
t

Q2

)1−ε
2

1− ε
2F1

(
1, 2− 2ε; 2− ε;

t

Q2

)
+

1− ε

2 (1− 2ε)

Γ2(1− ε)

Γ(1− 2ε)
2F1

(
−1 + ε, 1− ε; −1 + ε;

t

Q2

)
− 2

1− 2ε

Γ2(1− ε)

Γ(1− 2ε)
2F1

(
ε, 1− ε; ε;

t

Q2

)]
. (25)

The above expressions are more useful because they expose the
(
t/Q2

)−ε factors
that have to be combined with the t−1−ε factor appearing in eq. (17), such that
they can be expanded using eq. (20). At this point, we can safely truncate the
above results at the t/Q2 leading power and write

K
(1)
R =

2CF

ε

{(
t

Q2

)−ε [
1 +O

(
t

Q2

)]
− Γ2(1− ε)

Γ(1− 2ε)
+O

(
t

Q2

)}
(26)

and

K
(2)
R = CF

{(
t

Q2

)−ε

O
(

t

Q2

)
− 3 + ε

2 (1− 2ε)

Γ2(1− ε)

Γ(1− 2ε)
+O

(
t

Q2

)}
. (27)

After expanding with respect to ε, the final result for KR reads

KR = 2
(4π)

ε

Γ(1− ε)

αS

2π
CF

dt

(Q2)
1+ε

[(
1

ε2
+

3

2ε
+

7

2
− π2

3

)
δ

(
t

Q2

)
− 3

2
L0

(
t

Q2

)
− 2L1

(
t

Q2

)]
+O(ε) +O

(
t

Q2

)
. (28)

1.4 The method of regions
Instead of computing the exact integrals and then expanding them with respect
to t/Q2 as we did above, we can adopt a different approach that allows us
to expand the integrand functions before performing the integration. This is
generally convenient since the expanded integrand functions are typically easier
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to integrate than the original ones. Such an approach is usually called method
of regions and consists in writing the original integrals as the sum of a set of
new integrals, each one obtained expanding its integrand in a certain limit of
the integration variables and the external parameters that we will call phase
space region or simply region. In this case, if we introduce the small parameter

λ =
t

Q2
, (29)

there are two regions that contribute to the integral over z. We will call soft
region the region where 1− z ∼ λ and collinear region the one where 1− z ∼ 1.

Exercise 4: Expand the integrals K
(1)
R and K

(2)
R in each of the regions and

compute them. Get the final result by summing the sub-results from the different
regions. NB: The two regions may have a non-zero overlapping that should not
be double-counted.

Solution: The integral K
(1)
R , in the ε → 0 limit, scales as λ0 both in the

soft and collinear regions (notice that |dz| = |d (1− z)| scales as λ in the soft
region). In the soft region, we can take advantage of the fact that 1− z ∼ λ to
substitute zε with 1, such that the integral becomes

K
(1,s)
R = 2CF

∫ 1

0

dz

(1− z)
1+ε θ

(
1− z − t

Q2

)
=

2CF

ε

[(
t

Q2

)−ε

− 1

]
. (30)

In the collinear region instead we can take advantage of the fact that 1− z ∼ 1
to get rid of the θ function, such that the integral becomes

K
(1,c)
R = 2CF

∫ 1

0

dz

zε (1− z)
1+ε = −2CF

ε

Γ2(1− ε)

Γ(1− 2ε)
. (31)

Finally, we have to subtract the overlapping contribution obtained either from
the expansion of the soft integrand of eq. (30) in the collinear limit or the
expansion of the collinear integrand of eq. (31) in the soft limit, which reads

K
(1,sc)
R = 2CF

∫ 1

0

dz

(1− z)
1+ε = −2CF

ε
. (32)

It is also possible to entirely get rid of the overlapping contribution by express-
ing the integral K(1)

R given in eq. (18) as

K̃
(1)
R = K

(1)
R = 2CF

∫ ∞

−∞

dz

zε (1− z)
1+ε θ

(
1− z − t

Q2

)
θ(z) (33)

and expanding θ(z) according to the scaling of 1 − z. In the collinear region,
θ(z) does not get expanded, such that K̃

(1,c)
R = K

(1,c)
R . However, in the soft

region, θ(z) at leading power gets truncated to θ(1) = 1, such that we get

K̃
(1,s)
R = 2CF

∫ ∞

−∞

dz

(1− z)
1+ε θ

(
1− z − t

Q2

)
=

2CF

ε

(
t

Q2

)−ε

. (34)
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If we tried to compute the new expression for the overlapping region, we would
now consistently get

K̃
(1,sc)
R = 2CF

∫ ∞

−∞

dz

(1− z)
1+ε θ(1− z) = 0. (35)

The integral K(2)
R instead, in the ε → 0 limit, scales as λ1 in the soft region

and as λ0 in the collinear region. This means that its leading power expansion
takes contribution only from the collinear region and we can write it as

K
(2,c)
R = CF

∫ 1

0

dz

zε (1− z)
ε [−1− z − ε (1− z)] = −CF

Γ2(1− ε)

Γ(1− 2ε)

3 + ε

2 (1− 2ε)
.

(36)
If we now define

S(1) = 2
(4π)

ε

Γ(1− ε)

αS

2π

dt

t1+ε

(
K

(1,s)
R −K

(1,sc)
R

)
(37)

and
J (1) =

(4π)
ε

Γ(1− ε)

αS

2π

dt

t1+ε

(
K

(1,c)
R +K

(2,c)
R

)
, (38)

the final result is now given by

KR = S(1) + 2J (1) +O
(

t

Q2

)
. (39)

The expansion of S(1) can be computed using eq. (20) and reads

S(1) = 2
(4π)

ε

Γ(1− ε)

αS

2π

dt

(Q2)
1+ε

[
− 1

ε2
δ

(
t

Q2

)
+

2

ε
L0

(
t

Q2

)
− 4L1

(
t

Q2

)]
+O(ε) . (40)

It corresponds to the first order in the αS expansion of the unrenormalized soft
function. The expansion of J (1) instead reads

J (1) =
(4π)

ε

Γ(1− ε)

αS

2π

dt

(Q2)
1+ε

[(
2

ε2
+

3

2ε
+

7

2
− π2

3

)
δ

(
t

Q2

)
+

(
−2

ε
− 3

2

)
L0

(
t

Q2

)
+ 2L1

(
t

Q2

)]
+O(ε) (41)

and corresponds to the first order in the αS expansion of the unrenormalized
jet function. Combining the two above results, we find again that

KR = 2
(4π)

ε

Γ(1− ε)

αS

2π
CF

dt

(Q2)
1+ε

[(
1

ε2
+

3

2ε
+

7

2
− π2

3

)
δ

(
t

Q2

)
− 3

2
L0

(
t

Q2

)
− 2L1

(
t

Q2

)]
+O(ε) +O

(
t

Q2

)
, (42)

which is coherent with the result of eq. (28).
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1.5 The extension to the next-to-leading power
Exercise 5: Extend the computation of the integral KR to the next-to-leading
power in the expansion with respect to t/Q2. Show that the exact integration
and the method of regions give the same result.

Solution: We start by extending the result from the exact integration at next-
to-leading power. Including one power order more in the expansion, eqs. (26)
and (27) become

K
(1)
R =

2CF

ε

{(
t

Q2

)−ε
[
1− ε2

1− ε

t

Q2
+O

((
t

Q2

)2
)]

− Γ2(1− ε)

Γ(1− 2ε)
+O

((
t

Q2

)2
)}

(43)

and

K
(2)
R = CF

{(
t

Q2

)−ε
[

2

1− ε

t

Q2
+O

((
t

Q2

)2
)]

− 3 + ε

2 (1− 2ε)

Γ2(1− ε)

Γ(1− 2ε)
+O

((
t

Q2

)2
)}

, (44)

such that the next-to-leading power correction to eq. (28) reads

K
(NLP)
R = 2

(4π)
ε

Γ(1− ε)

αS

2π

dt

(Q2)
1+ε 2CF +O(ε) . (45)

The next step is to obtain the above result using the method of regions.
After noticing that, in the soft region, we can expand

z−ε = 1 + ε (1− z) +O
(
λ2
)
, (46)

and
θ(z) = θ(1)− (1− z) δ(1) +O

(
λ2
)
= 1 +O

(
λ2
)
, (47)

starting from eq. (18), we can write the next-to-leading power correction to the
soft contribution to K

(1)
R as

K
(1,s,NLP)
R = 2CF ε

∫ ∞

−∞

dz

(1− z)
ε θ

(
1− z − t

Q2

)
= −2CF ε

1− ε

(
t

Q2

)1−ε

. (48)

The next-to-leading power correction to the collinear contribution to K
(1)
R would

instead come from the expansion of the θ function

θ

(
1− z − t

Q2

)
= θ(1− z)− t

Q2
δ(1− z) +O

(
λ2
)
. (49)
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However the product
(1− z)

−ε
δ(1− z) = 0 (50)

makes such a correction vanish, such that we can write

K
(1,c,NLP)
R = 0. (51)

As for the integral K(2)
R given in eq. (19), we proved in the previous section

that the soft region starts contributing at next-to-leading power, where we can
write

K
(2,s,NLP)
R = −2CF

∫ ∞

−∞

dz

(1− z)
ε θ

(
1− z − t

Q2

)
=

2CF

1− ε

(
t

Q2

)1−ε

(52)

and, using eq. (49) again,
K

(2,c,NLP)
R = 0. (53)

Summing together K
(1,s,NLP)
R , K(1,c,NLP)

R , K(2,s,NLP)
R and K

(2,c,NLP)
R and expand-

ing with respect to ε up to the finite part, we finally find that the next-to-leading
power correction to the integral given in eq. (17) is

K
(NLP)
R = 2

(4π)
ε

Γ(1− ε)

αS

2π

dt

(Q2)
1+ε 2CF +O(ε) (54)

which is coherent with the result of eq. (45) obtained with the exact integration.
We notice that the above result is not the full next-to-leading power correc-

tion to the decay amplitude since we have not included in the calculation the
next-to-leading power terms dropped when eq. (12) was truncated to eq. (14).
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