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Introduction

 Unsupervised machine learning

 Identify (disjoint) data groupings

 Utilizes similarity of items

 Typical application scenarios

• Data exploration (working hypothesis)

• Segmentation

• Label generation for classification

Clustering
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Terminology

 Samples/instances

• Examples: a measurement, ensemble

members, an image

 Features or attributes are properties

• Examples: surface temperature, surface

coordinate, pixel color

 Channels

• Examples: image color channels, spectral

bands, time series



Measuring Similarity

… or rather dissimilarity

 Expressing similarity often hard

 Dissimilarity/distances alternative

 Minkowski distances

• Manhattan (𝐿1)

• Euclidean distances (𝐿2)

• Arbitrary (𝐿𝑝 =
𝑝
σ 𝑥 − 𝑦

𝑝
)

 Other distances

• Geodesic

• Mahalanobis

• Chebychev

Euclidean Mahalanobis

Manhattan
Chebychev



Preprocessing

Normalization and Feature Engineering

 Feature Engineering

• Adding descriptive derived features

• Mainly domain knowledge

 Normalization

• Distance measures require same scales

• [0,1], standardization, unit length

 Feature Reduction

• „Curse of dimensionality“

• Achieve interpretability

• Approaches: PCA, Autoencoder, …



Clustering Approaches

© Wikimedia Commons

https://en.wikipedia.org/wiki/Cluster_analysis

Density-basedCentroid-based

Distribution-based

Grid-based

Connectivity-based



K-Means

 Core idea: k clusters around centroids

 Iterative minimization

• argmin
𝐶

σ𝑖=1
𝑘 σ𝑥∈𝐶𝑖

𝑥 − ҧ𝑥 2

• Other matrics possible

 Algorithm sketch

• Choose k centroids

• For each points calculate distance to centroids

• Assign point to closest centroid

• Estimate new centroids as mean of points

• Repeat until convergence
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K-Means

 Centroid selection

• Random sampling

• Explicit specification

• Heuristics (e.g. K-Means++)

 Estimating k

• Domain knowledge

• Multiple runs, „elbow“-method

 Determining convergence

• Centroid movement below threshold (𝜀)

• Upper iterations bound



K-Means

 Algorithmic properties

• (Hyper-)globular clusters

• Each point guaranteed to be in cluster

• Susceptible to outliers (due to mean)

 Computational properties

• Non-deterministic, 

• Time complexity: 𝒪(𝑛 × 𝑘 × 𝑖)

• Space complexity: 𝒪(𝑛 + 𝑘)

 Trivial to parallelize

 Extensions: k-mediods, fuzzy C-Means, batched

Discussion
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DBSCAN

 Core idea: dense regions are clusters

 Two parameters

• 𝑚𝑖𝑛𝑃𝑡𝑠 – spatial search radius

• 𝜀 – density threshold

 Algorithm sketch

• For each point perform spatial search

• If density criterion fulfilled, recursive expansion

• Else noise identified

• Continue with unvisited points

𝜀



DBSCAN

Example

𝜀

Border

Core
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DBSCAN

 Algorithmic properties

• Detects noise

• Cluster count may be apriori unknown

• Arbitrary shapes, except „bow ties“

 Computational properties

• Deterministic

• Time complexity: 𝒪(𝑛 × log 𝑛 )

• Space complexity: 𝒪(𝑛)

 Parallelized for Minkowski distances

 Extensions: SUBCLU, HDBSCAN, ST-DBSCAN

𝜀

Discussion
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Self-organizing Maps (SOMs)

…or Kohonen-Network

 Core idea: „I am not a clustering algorithm“

• Dimensionality reduction algorithm

• Map data to discrete, quantized grid

• Inherent structure enables clustering

 Form of artificial neural network

• Unsupervised model

• Not a gradient optimizer

• Instead: competitive learning

 Maintains high-dimensional topology
NeuronDistance

Weights (dimensionality of data)



Self-organizing Maps (SOMs)

…or Kohonen-Network

 Highly flexible toolkit

• Here: 2D, rectangular base form

• Fixed grid-size, linear decays

 Algorithm sketch

• Randomly initialize quantization weights

• Determine best-matching unit (𝑏𝑚𝑢) for samples 𝑋

• Update all weights (gaussian distance to 𝑏𝑚𝑢)

• 𝑊𝑖 𝑠 + 1 = 𝑊𝑖 𝑠 + 𝑙 𝑠 ∗ 𝑟 𝑏𝑚𝑢, 𝑠, 𝑖 ∗ 𝑋 −𝑊𝑖 𝑠

• Decay learning-rate 𝑙 and radius 𝑟

• Repeat until convergence or epoch count reached

𝑋



Self-organizing Maps (SOMs)

Example

𝑏𝑚𝑢
𝑋
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𝑏𝑚𝑢
𝑋



Self-organizing Maps (SOMs)

Example

𝑋



Self-organizing Maps (SOMs)

Discussion

 Algorithmic properties

• Topology-preserving, discrete quantization

• Density-matching and feature selective

• On-the-fly training (e.g. streams)

 Computational properties

• Expensive training

• Time complexity: 𝒪(𝑒 × 𝑛 × log 𝑛 )

• Space complexity: 𝒪(𝑤 × ℎ ×⋯× 𝑑)

 Highly parallelizable

 Extensions: hexagonal grid, Growing SOMs



Self-organizing Maps (SOMs)

U-Matrix and Clustering

 U-Matrix computation and visualization

 Matrix with shape of SOM

 Each position maps internal weight distances

• Usually immediate neighbor average

• Visualization as SOM-dimensional image

 Cluster analysis

• Standard clustering on neurons vectors

• Threshold connected-component labeling

• Image processing on U-Matrix

• Map data items to 𝑏𝑚𝑢 index, look up cluster map
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Cluster Validation

 Quantify clustering quality

 Compare different clustering algorithms

 Domain knowledge

 External measures

• Compare to ground truth (labels)

• May be more suitable classification task

 Internal measures

• Works on data only, no reference

• Based of cohesion and separation



Cluster Validation

Sum of Squared Errors (SSE)

 Measures distances to cluster nucleus

 Considers cluster cohesion only

 Purely relative measure

• 𝑆𝑆𝐸 = σ𝑖=1
𝑘 σ𝑝∈𝐶𝑖

𝑝 − ҧ𝑝 2

• 𝑆𝐷 = σ𝑖=1
𝑘 σ𝑝∈𝐶𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, ҧ𝑝)

 Tends to favors small, globular clusters



Cluster Validation

Silhouette Coefficient

 Balances separation (𝑠) and cohesion (𝑐)

 For each data point 𝑖

• 𝑐(𝑖) ≜ average all-to-all intra-cluster distance

• 𝑠(𝑖) ≜ minimal average other-cluster distance

• 𝑠𝑐 𝑖 =
𝑠 𝑖 −𝑐 𝑖

max 𝑠 𝑖 ,𝑐 𝑖

 Global ഥ𝑠𝑐 allows to judge entire clustering

 Favors well separated clusters

𝑐(𝑖)

𝑠(𝑖)



Cluster Validation

Dunn-Index

 Global worst-case view of clustering

 Purely relative measure

• Globally loosest cohesion Δ

• Overall smallest separation (𝛿)

• Dunn-Index is cohesion-separation-fraction

• Δ𝑖 = max
𝑝,𝑞∈𝐶𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞)

• 𝛿 𝐶𝑖 , 𝐶𝑗 = min
𝑝∈𝐶𝑖,𝑞∈𝐶𝑗

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞)

• 𝐷𝐼𝑚 =
min

1≤𝑖<𝑗≤𝑚
𝛿(𝐶𝑖,𝐶𝑗)

max
1≤𝑘≤𝑚

Δ𝑘

 Tends to favor many small clusters

Δ

𝛿
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Summary

 Visited clustering topics

• Basics (terminology, similarity, preprocessing)

• Algorithms

• Internal result validation

 Take-aways

• Cluster analysis is complex topic

• Analysis quality depends on selected method

 Invitation: clustering application discussion
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