Clustering

Markus Götz, KIT

Agenda

Introduction

Basics, terminology, similarity

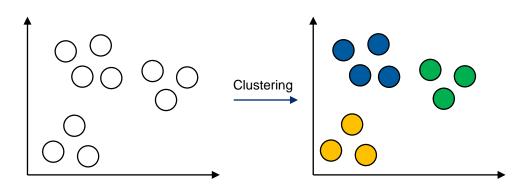
Methods

- K-Means
- DBSCAN
- Self-organizing Maps (SOMs)

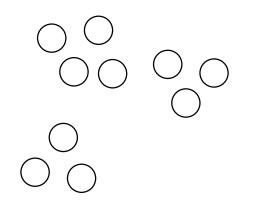
Cluster Validation

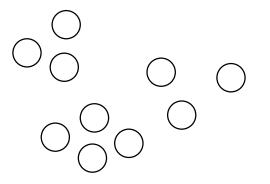
- SSE
- Silhouette Coefficient
- Dunn-Index
- Summary

- Unsupervised machine learning
- Identify (disjoint) data groupings
- Utilizes similarity of items
- Typical application scenarios
 - Data exploration (working hypothesis)
 - Segmentation
 - Label generation for classification

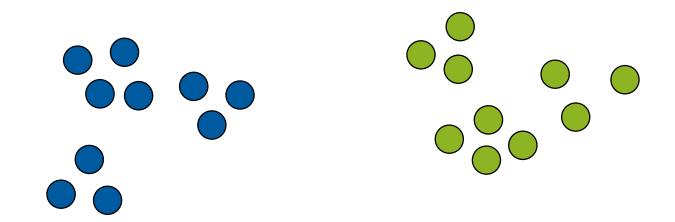


What is a cluster?

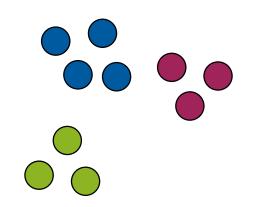


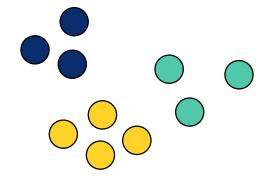


What is a cluster?

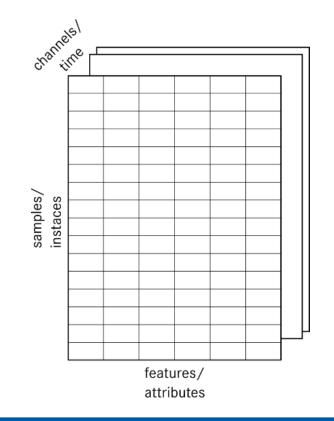


What is a cluster?





Terminology



- Samples/instances
 - Examples: a measurement, ensemble members, an image
- **Features** or attributes are properties
 - Examples: surface temperature, surface coordinate, pixel color

Channels

 Examples: image color channels, spectral bands, time series

Measuring Similarity

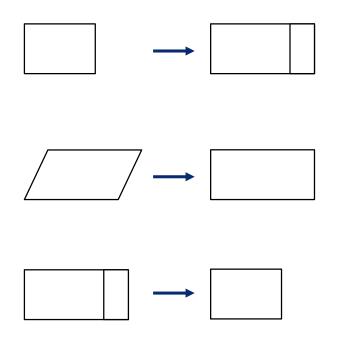
... or rather dissimilarity

- Expressing similarity often hard
- Dissimilarity/distances alternative
- Minkowski distances
 - Manhattan (L₁)
 - Euclidean distances (L₂)
 - Arbitrary $(L_p = \sqrt[p]{\sum |x y|^p})$
- Other distances
 - Geodesic
 - Mahalanobis
 - Chebychev



Preprocessing

Normalization and Feature Engineering



Feature Engineering

- Adding descriptive derived features
- Mainly domain knowledge

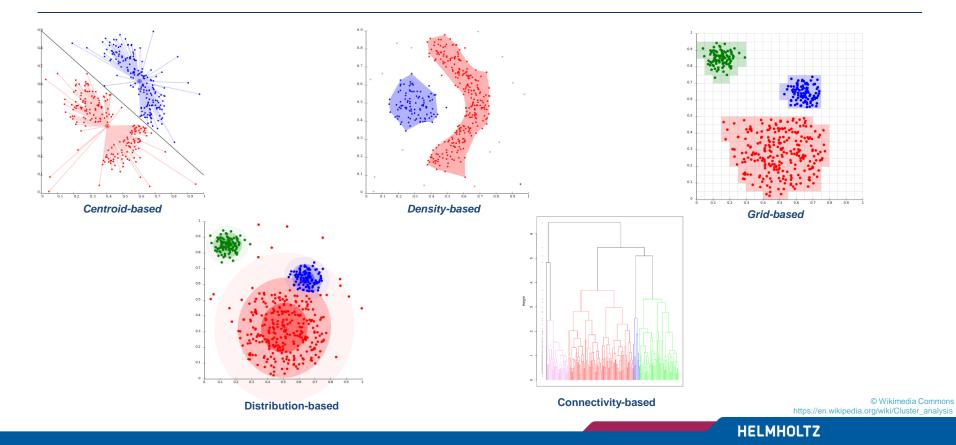
Normalization

- Distance measures require same scales
- [0,1], standardization, unit length

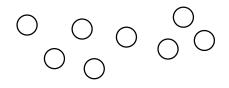
Feature Reduction

- "Curse of dimensionality"
- Achieve interpretability
- Approaches: PCA, Autoencoder, ...

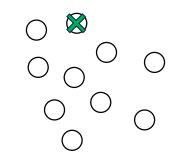
Clustering Approaches

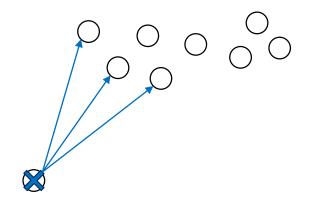


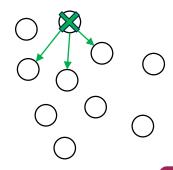
- Core idea: k clusters around centroids
- Iterative minimization
 - $\arg\min_{C} \sum_{i=1}^{k} \sum_{x \in C_{i}} ||x \bar{x}||^{2}$
 - Other matrics possible
- Algorithm sketch
 - Choose k centroids
 - For each points calculate distance to centroids
 - Assign point to closest centroid
 - Estimate new centroids as mean of points
 - Repeat until **convergence**



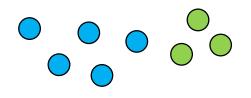
 \bigotimes

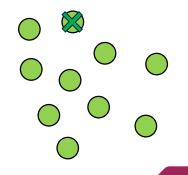


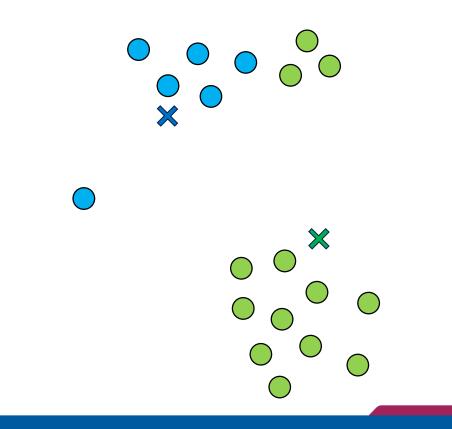


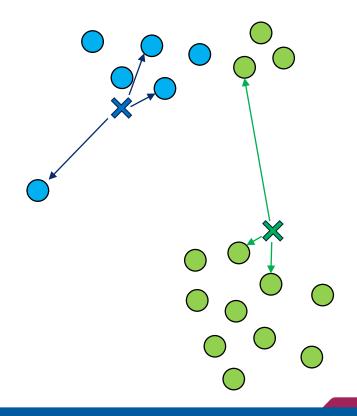


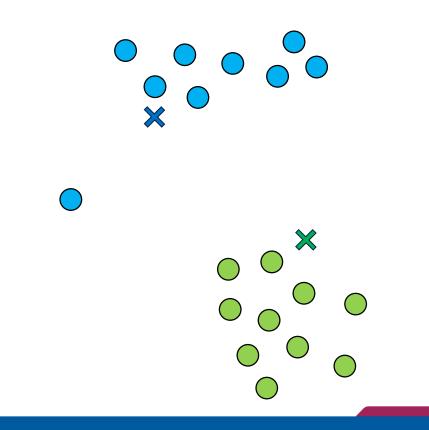
Example



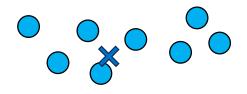


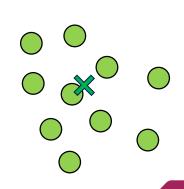




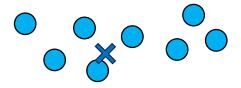


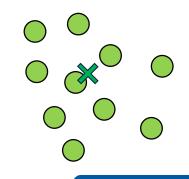
Example





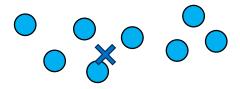
- Centroid selection
 - Random sampling
 - Explicit specification
 - Heuristics (e.g. K-Means++)
- Estimating k
 - Domain knowledge
 - Multiple runs, "elbow"-method
- Determining convergence
 - Centroid movement below threshold (ε)
 - Upper iterations bound

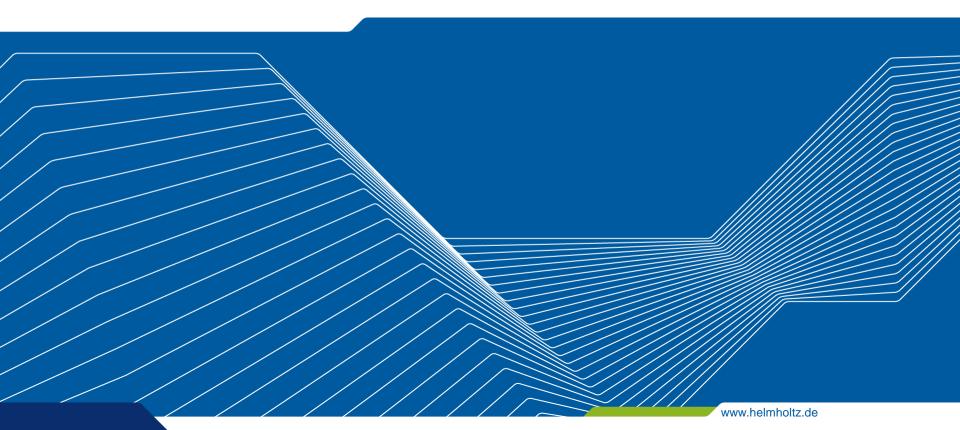




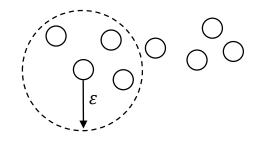
Discussion

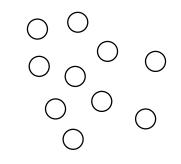
- Algorithmic properties
 - (Hyper-)globular clusters
 - Each point guaranteed to be in cluster
 - Susceptible to outliers (due to mean)
- Computational properties
 - Non-deterministic,
 - Time complexity: $\mathcal{O}(n \times k \times i)$
 - Space complexity: O(n + k)
- Trivial to parallelize
- Extensions: k-mediods, fuzzy C-Means, batched



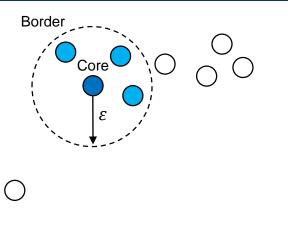


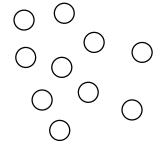
- Core idea: dense regions are clusters
- Two parameters
 - *minPts* spatial search radius
 - ε density threshold
- Algorithm sketch
 - For each point perform spatial search
 - If density criterion fulfilled, recursive expansion
 - Else noise identified
 - Continue with unvisited points



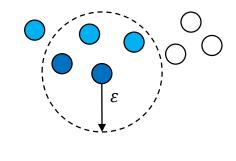


Example

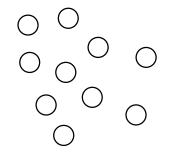




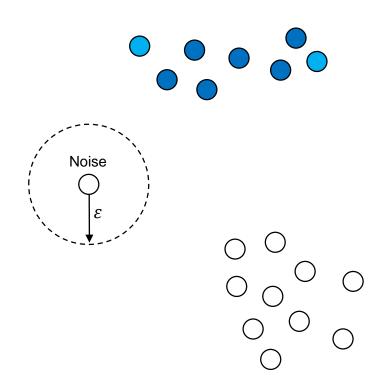
Example



 \bigcirc

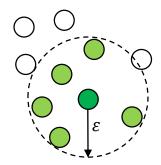


DBSCAN Example



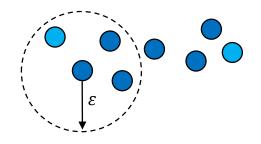
DBSCAN Example

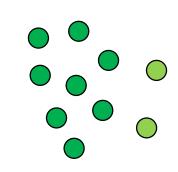
Noise

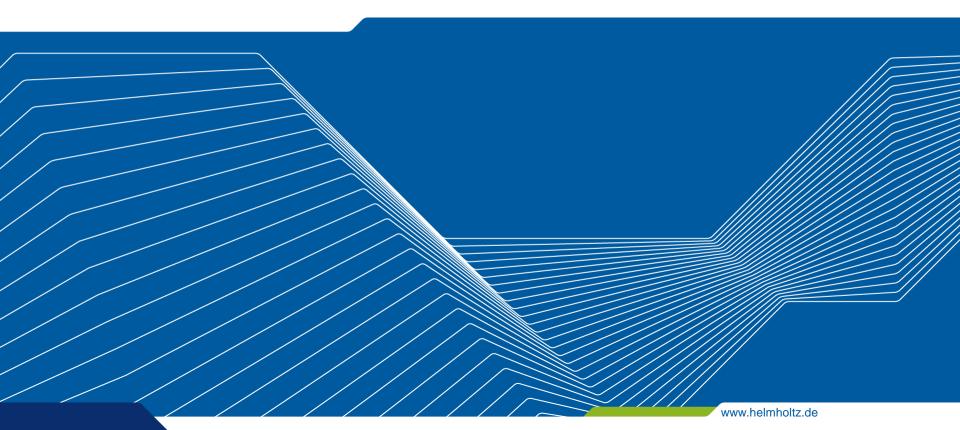


Discussion

- Algorithmic properties
 - Detects noise
 - Cluster count may be apriori unknown
 - Arbitrary shapes, except "bow ties"
- Computational properties
 - Deterministic
 - Time complexity: $\mathcal{O}(n \times \log(n))$
 - Space complexity: O(n)
- Parallelized for Minkowski distances
- Extensions: SUBCLU, HDBSCAN, ST-DBSCAN



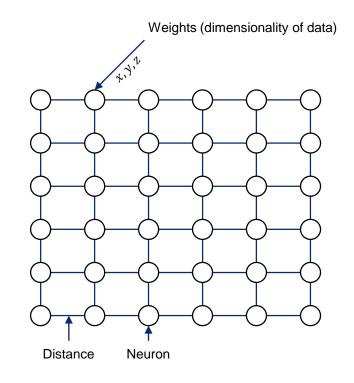




Self-organizing Maps (SOMs)

...or Kohonen-Network

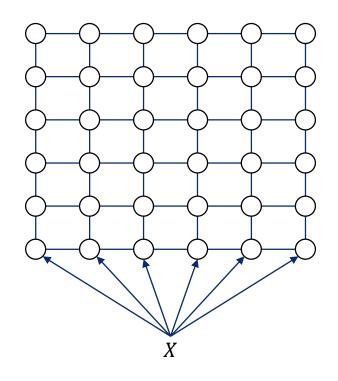
- Core idea: "I am not a clustering algorithm"
 - Dimensionality reduction algorithm
 - Map data to discrete, quantized grid
 - Inherent structure enables clustering
- Form of artificial neural network
 - Unsupervised model
 - Not a gradient optimizer
 - Instead: competitive learning
- Maintains high-dimensional topology



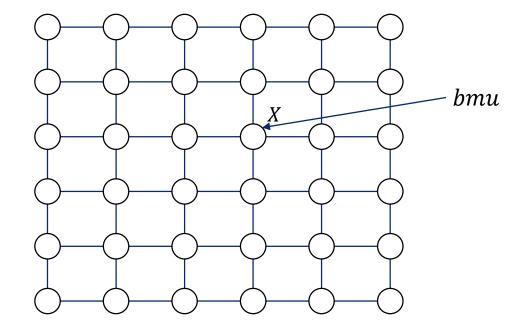
Self-organizing Maps (SOMs)

...or Kohonen-Network

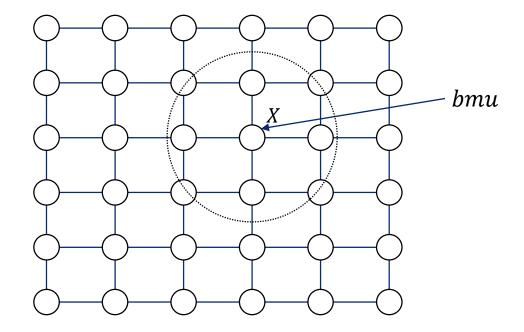
- Highly flexible toolkit
 - Here: 2D, rectangular base form
 - Fixed grid-size, linear decays
- Algorithm sketch
 - Randomly initialize quantization weights
 - Determine **best-matching unit** (*bmu*) for samples *X*
 - Update all weights (gaussian distance to bmu)
 - $W_i(s+1) = W_i(s) + l(s) * r(bmu, s, i) * (X W_i(s))$
 - Decay learning-rate l and radius r
 - Repeat until convergence or **epoch** count reached



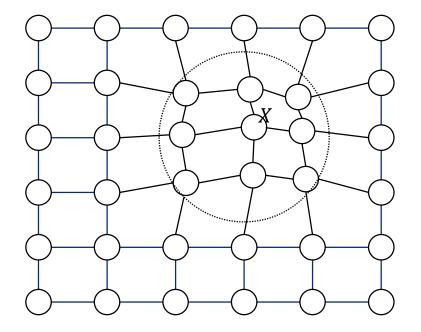
Self-organizing Maps (SOMs) Example



Self-organizing Maps (SOMs) Example



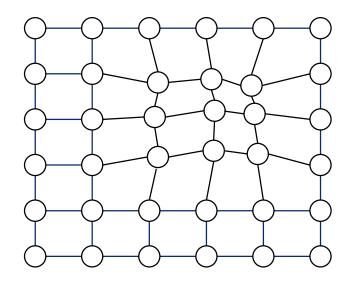
Self-organizing Maps (SOMs) Example



Self-organizing Maps (SOMs)

Discussion

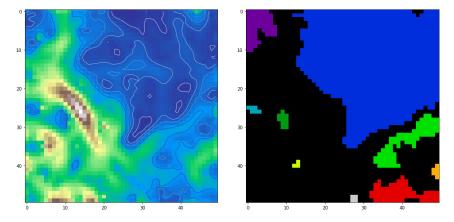
- Algorithmic properties
 - Topology-preserving, discrete quantization
 - Density-matching and feature selective
 - On-the-fly training (e.g. streams)
- Computational properties
 - Expensive training
 - Time complexity: $\mathcal{O}(e \times n \times \log(n))$
 - Space complexity: $\mathcal{O}(w \times h \times \cdots \times d)$
- Highly parallelizable
- Extensions: hexagonal grid, Growing SOMs

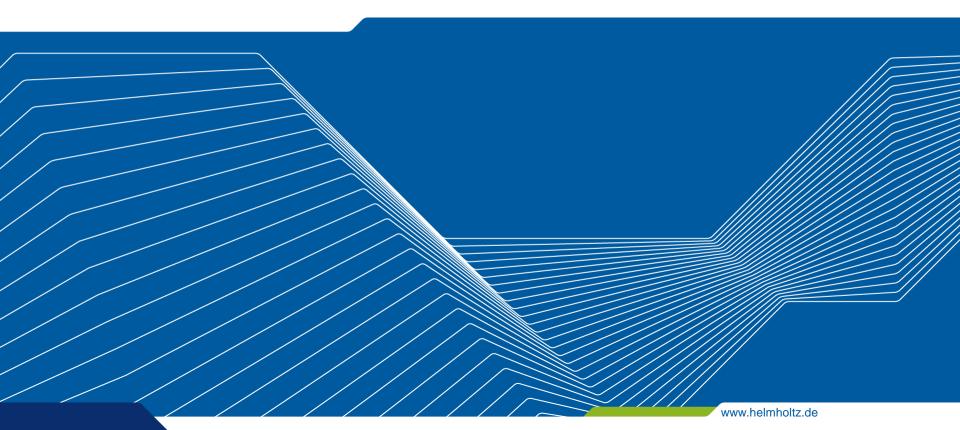


Self-organizing Maps (SOMs)

U-Matrix and Clustering

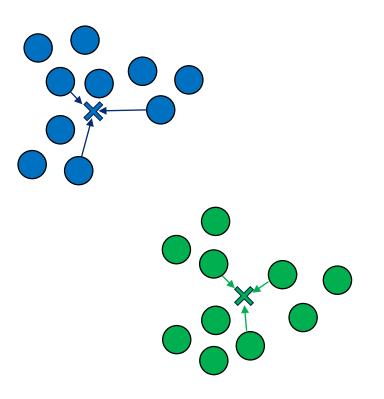
- U-Matrix computation and visualization
 - Matrix with shape of SOM
 - Each position maps internal weight distances
 - Usually immediate neighbor average
 - Visualization as SOM-dimensional image
- Cluster analysis
 - Standard clustering on neurons vectors
 - Threshold connected-component labeling
 - Image processing on U-Matrix
 - Map data items to *bmu* index, look up cluster map





- Quantify clustering quality
- Compare different clustering algorithms
- Domain knowledge
- External measures
 - Compare to ground truth (labels)
 - May be more suitable classification task
- Internal measures
 - Works on data only, no reference
 - Based of **cohesion** and **separation**

Sum of Squared Errors (SSE)



- Measures distances to cluster nucleus
- Considers cluster cohesion only
- Purely relative measure

•
$$SSE = \sum_{i=1}^{k} \sum_{p \in C_i} (p - \bar{p})^2$$

•
$$SD = \sum_{i=1}^{k} \sum_{p \in C_i} distance(p, \bar{p})$$

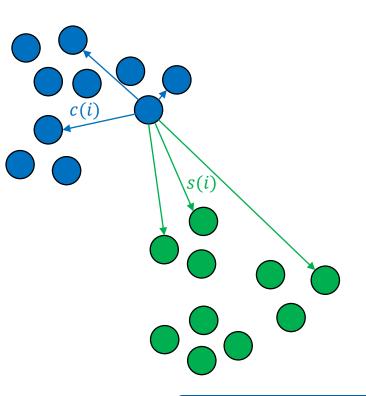
Tends to favors small, globular clusters

Silhouette Coefficient

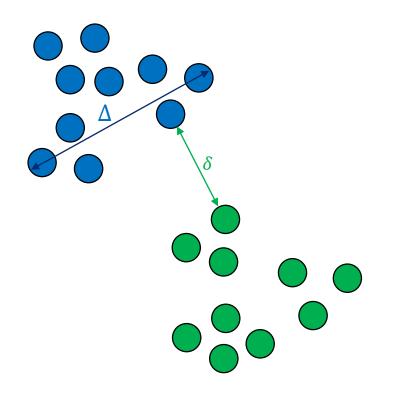
- Balances separation (s) and cohesion (c)
- For each data point *i*
 - $c(i) \triangleq$ average all-to-all intra-cluster distance
 - $s(i) \triangleq$ minimal average other-cluster distance

•
$$sc(i) = \frac{s(i)-c(i)}{\max(s(i),c(i))}$$

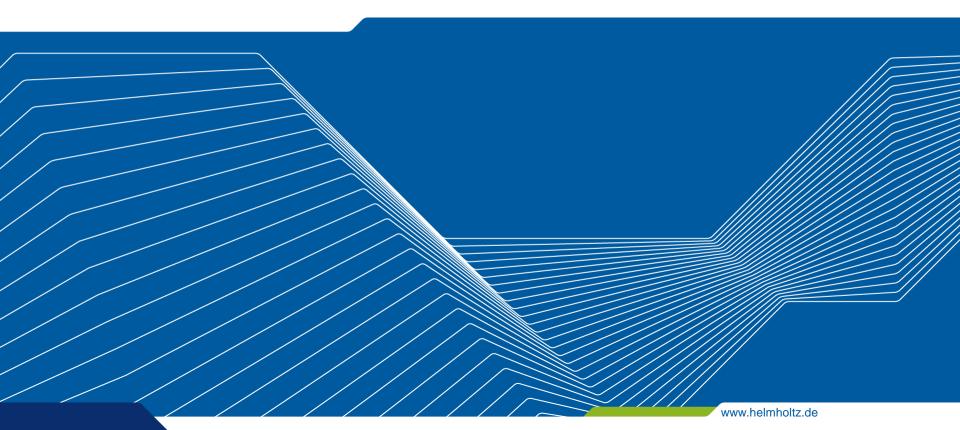
- Global sc allows to judge entire clustering
- Favors well separated clusters



Dunn-Index



- Global worst-case view of clustering
- Purely relative measure
 - Globally loosest cohesion (Δ)
 - Overall smallest separation (δ)
 - Dunn-Index is cohesion-separation-fraction
 - $\Delta_i = \max_{p,q \in C_i} distance(p,q)$
 - $\delta(C_i, C_j) = \min_{p \in C_i, q \in C_j} distance(p, q)$
 - $DI_m = \frac{\min_{1 \le i < j \le m} \delta(C_i, C_j)}{\max_{1 \le k \le m} \Delta_k}$
- Tends to favor many small clusters



Summary

- Visited clustering topics
 - Basics (terminology, similarity, preprocessing)
 - Algorithms
 - Internal result validation

Take-aways

- Cluster analysis is complex topic
- Analysis quality depends on selected method
- Invitation: clustering application discussion

Discussion

