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OUTLINE
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 Hyperparameters 

 Cross validation

 Learning curve

 Grid search

 Random search

 Bayesian optimization

 Demo



HYPERPARAMETER OPTIMIZATION

METHODS
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 Evidence framework (Empirical Bayes) 

 Bayesian information criterion

 Akaike information criterion

 Fully Bayesian approach

 Grid search – cross validation

 Random search – cross validation

 Bayesian optimization

 „Leave one out" cross validation



SUPERVISED LEARNING  
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We consider supervised learning, e.g. features and labels 

are availabe for training 

Application examples:

 Regression: Optical flow estimation, predicting stock prices,

chemical weather forecasting 

 Classification: Object recognition, image segmentation 



SUPERVISED LEARNING  
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Formal definition: Find  functional relationship 

between infinite sets X (features) and Y (labels) based on 
a finite set of examples  

ill-posed problem               requires additional assumptios  

Function usually choosen from a parameterized set    , e.g.

 Linear regression:       

 Neural networks:    
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SUPERVISED LEARNING  

Learning as an optimization problem:

Expected risk:

Only finite number of samples                          are availabe 

Loss function

Approximation of          required 



MODEL SELECTION
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We have to make a couple of design decisions (select a model)

 Function space       , e.g. linear functions  

 Loss function, e.g. quadratic loss 

 Approximation of expected risk, e.g.

 Optimization strategy

Decisions belong to model/hyperparameter selection



LAW OF LARGE NUMBERS
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The law of large numbers indicates to estimate the 
expected risk by the average of inidividual losses  

Example: Coin-toss experiment 

Bias:

Variance:

Properties of estimators:



LINEAR REGRESSION  
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Example: Linear regression

Emphirical risk:  
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Example: Polynomial regression

Emphirical risk:  

EXAMPLE: POLYNOMIAL REGRESSION  
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EXAMPLE: POLYNOMIAL REGRESSION  



EXAMPLE: POLYNOMIAL REGRESSION
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BIAS – VARIANCE TRADEOFF  
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Hyperparameter: Parameters determine the capacity/complexity
of the model, parameters not part of the 
prediction model, e.g. optimization parameter,
data-preprocessing etc.  

Learn the model on different training sets (#samples=6) 



BIAS-VARIANCE TRADEOFF
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Sweet spot

Variance

Model complexity 

Error 



BIAS – VARIANCE TRADEOFF
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Estimation theory: It can be shown that for quadratic 
loss functions and mean squared error: 

The mean squared error (MSE) can be decompoised as:

MSE                                Bias                              Variance 

A similar decomposition can be derrived for clasification 
scores (see e.g. Manning, Christopher D.; Raghavan,  Prabhakar; Schütze, Hinrich 

(2008). Introduction to Information Retrieval. Cambridge University Press. pp. 308–314. ) 

http://nlp.stanford.edu/IR-book/
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Ridge polynomial regression

Logistic ridge polynomial regression

: Sigmoid function

: Parameter space         : Hyperparameter space

BIAS – VARIANCE TRADEOFF



EXAMPLE OF HYPERPARAMETERS  
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Neural networks

: Parameter space         : Hyperparameter space

Neural network hyperparameter :
Learning rate, loss function, mini-batch Size, number of epochs, 
momentum, number of hidden units, weight decay, nonlinearity, weight 
initialization, random seeds and model averaging, layer types(full, 
convolution, pooling), batch normalization, layer connections, dropout…

Multi-label classification



1) Train parameters for fixed hyperparameters on training data 
according to the emphirical risk:

HOLDOUT METHOD
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Idea: Split the available data into training data and validation 
data (typical: validation data 20% to 40%) 

Data set  N

Training data  m Test data n

2) Repeat 1.) for several sets of hyperparameter and compare 
the models on the validation data    



HOLDOUT METHOD  

Example: Logistic ridge regression on MNIST Dataset

: Sigmoid function

MNIST Data (60k training data, 10k test data)
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HOLDOUT METHOD  

Example: Logistic ridge regression on MNIST Dataset
# of training images: 800, # of validation images: 200
# of test images: 9000
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CROSS VALIDATION
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 Trainings data is divided into k non-overlapping patches 
(k-fold cross validation)



K-FOLD CROSS VALIDATION  
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Example: Logistic ridge regression on MNIST Dataset
# of training images: 800, # of validation images: 200
# of test images: 9000

10-Fold cross-validation on 1000 samples 



RANDOM SAMPLING
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 Trainings data is divided into r random overlapping patches 
(repeated random sub-sampling validation)



RANDOM SAMPLING  
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Example: Logistic ridge regression on MNIST Dataset
# of training images: 800, # of validation images: 200
# of test images: 9000
random sampling with 40% validation data of 1000



STRATISFIED CROSS-VALIDATION   
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 Trainings data is divided into k non-overlapping patches 
(k-fold cross validation) with stratified folds 



MODEL COMPARISON 
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NESTED CROSS-VALIDATION   
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LEARNING CURVE     
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Cross validation allows to estimate the „sweet spot“
but does not allow to judge if enough training data 
is used

 optimal tradeoff bewtween training and validation/test data 

 the need to obtain more data

Idea:  Train the model on subsets of the training data and 
observe ist performance as amount of data 
used for training increases 



LEARNING CURVE
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LEARNING CURVE
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Degree 1                           Degree 2

Degree 6                           Degree 6



 Exhaustive search through a manually 
specified subset of the hyperparameter
space

 Apply CV on each hyperparameter set

 Full parallelizable as model applied independently 
on each hyperparameter set  

 Suffers from the curse of dimensionality, e.g. 10 hyper-
parameter per dimension               for dim=10 

GRID SEARCH     
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2D grid 



RANDOM SEARCH      
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Random search tend to be less expensive and time consuming 
because they do not examine every possible combination 
of parameters

Randomly selects a chosen number of hyperparameter sets
from a given domain and tests only those

2D grid 



RANDOM SEARCH      
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Advantages:

 The experiment can be stopped any time and the trials 
form a complete experiment

 New trials can be added to an experiment without having 
to adjust the grid and commit to a much larger experiment

 Scales independent of the input dimension 

 Good coverage, e.g. if the region of hyperparameters that 
are near optimal occupies at least 5% of the grid, then 
random search with 60 trials will find that region with high 
probability (94%).



RANDOM SEARCH - EXAMPLE      
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Highlighted in green are the 21 pairings 

with the highest scores out of the 450 total combinations

Probability to hit the green area with 60 trials  

Probability not to hit the yellow area with 60 trials 

5% highest scores



RANDOM SEARCH – GRID SEARCH      
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If some hyper-parameters are unimportant for the model
grid search waste computing time 

Bergstra and Bengio: Random Search for Hyper-Parameter Optimization, IJML, 2012



QUASI – RANDOM SEQUENCES       
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Few random samples tend to form clusters and wholes

Domain not covered evenly 

Quasi-random sequence is a deterministic irrelgular sequence
with the property that for all values of N, its subsequence 
x1, ..., xN has a low discrepancy

Random                          Sobol                    Hammersley                  Halton



HALTON SEQUENCE       

Sequence is constructed based on finer and finer 

prime based divisions of sub intervals of unit interval

2D example with p=2,3Example: p=3
1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 

1/27, 10/27, 19/27, 4/27, 13/27, 22/27,

7/27, 16/27, 25/27, 2/27, 11/27, 20/27,

5/27, 14/27, 23/27, 8/27, 17/27, 26/27

Wikipedia/Cmglee /CC BY 3.0
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https://commons.wikimedia.org/wiki/User:Cmglee


BAYESIAN OPTIMIZATION        

Seite 38

We can evaluate the empirical risk pointwise, but do not 

have an easy functional form or gradients

Idea: Learn a surrogate of the expected risk that is  cheap to 

evaluate and provide an confidence interval to determine the 

next grid point    

Search the hyperparameter space with 

 Exploration: Seek places with high variance

 Exploitation: Seek places with low mean
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BAYESIAN OPTIMIZATION        

Surrogate function example 



BAYESIAN OPTIMIZATION 
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BAYESIAN OPTIMIZATION 
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BAYESIAN OPTIMIZATION 
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BAYESIAN OPTIMIZATION 
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BAYESIAN OPTIMIZATION 
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MULTIVARIATE GAUSSIAN        
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How to sample functions?
Lets start with sampling from multivariate Gaussian
and interpolate points  
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A Gaussian process defines a probability distribution         

over functions

Notice: is an infinite-dimensional quantity  

No explicit probability distribution can be defined    

Consider  the vector                                                 of 

function values evaluated at finite number of positions

Definition: A Gaussian Process GP is a collection of 

random variables of which each finite sample is a 

multivariate Gaussian distribution   

GAUSSIAN PROCESSES         
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Definition: A Gaussian Process (GP) is a collection of 

random variables of which each finite sample is a 

multivariate Gaussian distribution   

A Gaussian process is fully determined by its mean 

function

and covariance function (kernel)

GAUSSIAN PROCESSES         
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Exponential kernel                  Matern kernel                           RBF kernel

KERNEL FUNCTIONS         
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GAUSSIAN PROCESSES         

Posterior mean                      Posterior Covariance 

Observed samples

Positions to be evaluated 
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GAUSSIAN PROCESSES         

Kernels need to be choosen (model selection)
and kernel parameter have to be set 

We are faced with additional hyperparameters 

But GP allow to use additional hyperparameter 
Optimization techniques 

 Marginal likelihood (evidence framework)

 Fully Bayesian approach
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MAXIMUM LIKELIHOOD         

The emphirical risk can be interpreted as the energy 
of a conditional probability density function (sampling pdf)

A consistent and efficient estimator of the model parameters 
is given by maximum likelihood

Note: The hyperparameters are set to theit estimate    



MARGINAL MAXIMUM LIKELIHOOD         

In order to estimate the hyperparameters we can marginalize 
parameters of a GP in closed form 

Maximum Likelihood estimation
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ACQUISITION FUNCTION  

We need some criterion to select a new grid point based 
on our GP surrogate model 

Probability of Improvement (Kushner 1964):

Expected Improvement (Mockus 1978):

GP Upper Confidence Bound (Srinivas et al. 2010):
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PROBABILITY OF IMPROVEMENT
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EXPECTED IMPROVEMENT
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UPPER CONFIDENCE BOUND



BAYESIAN OPTIMIZATION  
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We combine all steps to Bayesian optimization

1) Evaluate          for some grid points, e.g. random search

2) Estimate a GP surrogate model based on current grid points

3) Optimize GP hyperparameters by marginal ML 

4) Compute an aquisition function

5) Select a new grid point by maximizing the aqusition function

6) Go to 2) or stop if           does not change any more   



EXAMPLE BO  
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EXAMPLE BO  
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EXAMPLE BO  
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EXAMPLE BO  
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EXAMPLE BO  
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DEMO 
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