HYPERPARAMETER OPTIMIZATION

HELMHOLTZ ANALYTICS FRAMEWORK DATA ANALYSIS METHODS WORKSHOP | KARLSRUHE | KIT

MARCH 23. 2018 I KAI KRAJSEK | JUELICH SUPERCOMPUTING CENTRE

Mitglied der Helmholtz-Gemeinschaft

OUTLINE

- Hyperparameters
- Cross validation
- Learning curve
- Grid search
- Random search
- Bayesian optimization
- Demo

HYPERPARAMETER OPTIMIZATION METHODS

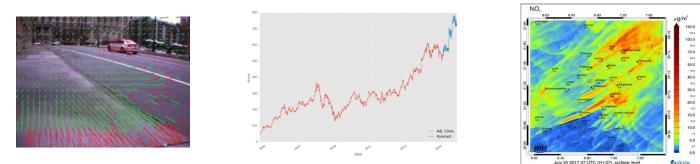
- Evidence framework (Empirical Bayes)
- Bayesian information criterion
- Akaike information criterion
- Fully Bayesian approach
- Grid search cross validation
- Random search cross validation
- Bayesian optimization
- "Leave one out" cross validation

SUPERVISED LEARNING

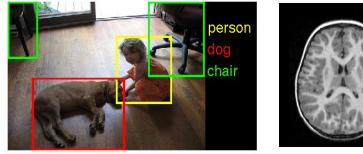
We consider supervised learning, e.g. features and labels are availabe for training

Application examples:

 Regression: Optical flow estimation, predicting stock prices, chemical weather forecasting



Classification: Object recognition, image segmentation



Mitglied der Helmholtz-Gemeinschaft

SUPERVISED LEARNING

Formal definition: Find functional relationship

 $f: X \to Y$

between infinite sets X (features) and Y (labels) based on a finite set of examples $x_i, y_i \sim p(x, y)$

ill-posed problem **m** requires additional assumptios

Function usually choosen from a parameterized set Λ , e.g.

- Linear regression: $y = ax + b, a, b \in \mathbb{R}$
- Neural networks: $y = g_N(g_{N-1}((...g_1(x))))$

$$g_i(x) = \sigma_i(A_i x + b_i), A_i \in \mathbb{R}^{m_i \times n_i}, b_i \in \mathbb{R}^{n_i}$$

 $\sigma_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_i}$

SUPERVISED LEARNING

Learning as an optimization problem:

 $\hat{f} = \arg\min_{f \in \Lambda} R(f)$

Expected risk:

$$R(f) := \int L(y, f(x))p(x, y)dxdy$$
Loss function

Only finite number of samples $x_i, y_i \sim p(x, y)$ are availabe

Mitglied der Helmholtz-Gemeinschaft

MODEL SELECTION

We have to make a couple of design decisions (select a model)

- Function space Λ_{Θ} , *e.g.* linear functions $\Theta = (a, b)$
- Loss function, *e.g.* quadratic loss $L(x) = x^2$
- Approximation of expected risk, e.g. $\hat{R}(f) := \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$
- Optimization strategy $\hat{f} = \arg \min_{f \in \Lambda} \hat{R}(f)$

Decisions belong to model/hyperparameter selection

LAW OF LARGE NUMBERS

The law of large numbers indicates to **estimate** the expected risk by the **average** of inidividual losses

$$\hat{R}_N(f) := \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i)) \qquad R(f) = \lim_{N \to \infty} \hat{R}_N(f)$$

Properties of estimators:

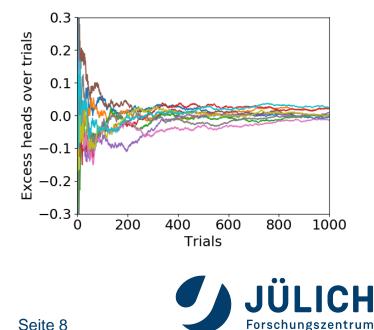
Bias:

$$\mathbb{B}(\hat{R}) := \mathbb{E}\left[\hat{R}(f)\right] - R(f)$$

Variance:

$$\operatorname{Var}(\hat{R}) := \mathbb{E}\left[\left(\hat{R}(f) - \mathbb{E}\left[\hat{R}(f)\right]\right)^2\right]$$

Example: Coin-toss experiment



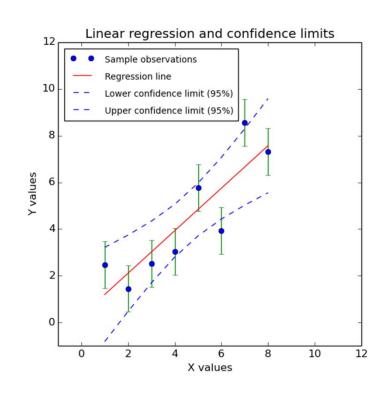
LINEAR REGRESSION

Example: Linear regression

$$y = ax + b$$
, $\Theta = (a, b)$ $L(x) = x^2$

Emphirical risk:

$$\hat{R}_N(a,b) := \frac{1}{N} \sum_{i=1}^N (y_i - ax_i - b)^2$$
$$\hat{a}, \hat{b} = \arg\min_{a,b} \hat{R}(a,b)$$



EXAMPLE: POLYNOMIAL REGRESSION

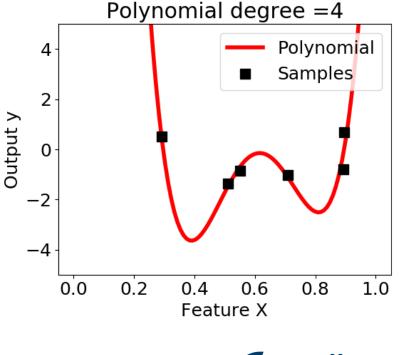
Example: Polynomial regression

$$y = a_0 + a_1 x + \dots + a_q x^q = \vec{a}^T \vec{x_q},$$

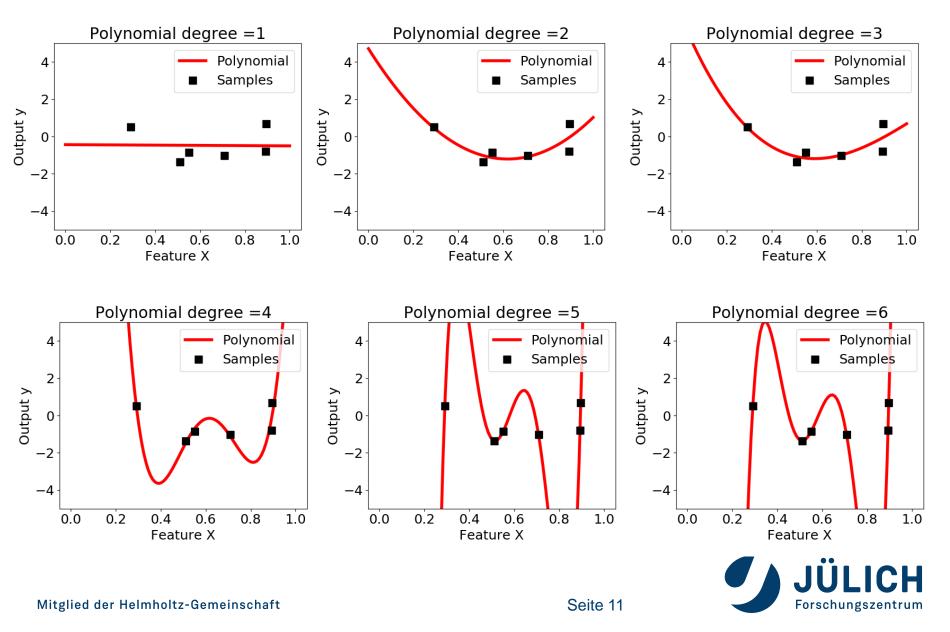
$$\Theta = (\vec{a} \in \mathbb{R}^q, q), \ L(\varepsilon) = \varepsilon^2$$
$$\vec{x}_q := (1, x, ..., x^q)$$

Emphirical risk:

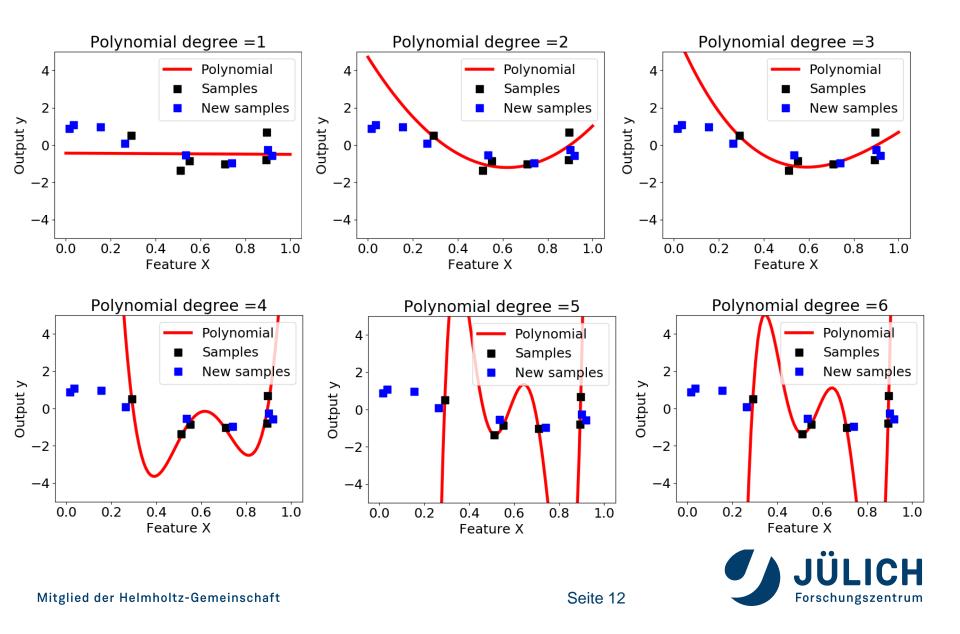
$$\hat{R}_N(\vec{a}) := \frac{1}{N} \sum_{i=1}^N \left(y_i - \vec{a}^T \vec{x}_n \right)^2$$
$$\hat{\vec{a}} = \arg\min_{\vec{a}} \hat{R}(\vec{a})$$



EXAMPLE: POLYNOMIAL REGRESSION

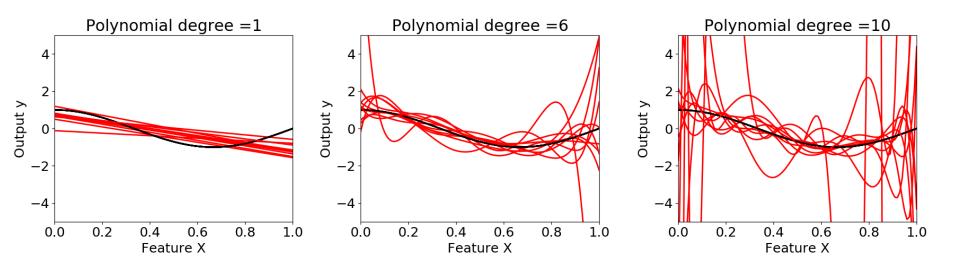


EXAMPLE: POLYNOMIAL REGRESSION



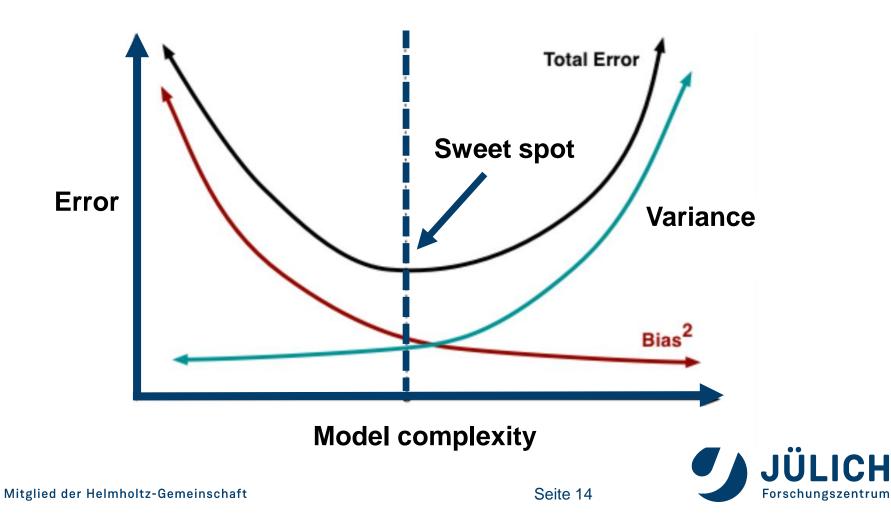
BIAS – VARIANCE TRADEOFF

Learn the model on different training sets (#samples=6)



Hyperparameter: Parameters determine the capacity/complexity of the model, parameters not part of the prediction model, *e.g.* optimization parameter, data-preprocessing etc.

BIAS-VARIANCE TRADEOFF



BIAS – VARIANCE TRADEOFF

Estimation theory: It can be shown that for quadratic loss functions and mean squared error:

$$\hat{f} = \arg\min_{f \in \Lambda} R(f) = \int y p(y|x) dy = \mathbb{E}[y|x]$$

The mean squared error (MSE) can be decompoised as:

$$\begin{array}{ccc} \mathsf{MSE} & \mathsf{Bias} & \mathsf{Variance} \\ \mathbb{E}\big[(f(x) - \mathbb{E}\left[y|x]\right)^2\big] \!=\! \left(\mathbb{E}[f(x)] \!-\! \mathbb{E}[y|x]\right)^2 \!+\! \mathbb{E}\Big[(f(x) - \mathbb{E}[f(x)])^2\Big] \\ \end{array}$$

A similar decomposition can be derrived for clasification scores (see e.g. Manning, Christopher D.; Raghavan, Prabhakar; Schütze, Hinrich (2008). Introduction to Information Retrieval. Cambridge University Press. pp. 308–314.)

BIAS – VARIANCE TRADEOFF

 Φ : Parameter space Θ : Hyperparameter space

Ridge polynomial regression

$$y = \vec{a}^T \vec{x_q}, \ L(\varepsilon) = \varepsilon^2 + \lambda \|\vec{a}\|^2 \qquad \Phi = \vec{a} \qquad \Theta = (q, \lambda)$$

Logistic ridge polynomial regression $y = \sigma \left(\vec{a}^T \vec{x_q} \right), L(y, \hat{y}) = \sum_{i=1}^N y_i \log(\hat{y}_i) + (1 - y_i) \log(\hat{y}_i) + \lambda \|\vec{a}\|^2$ $\sigma : \text{Sigmoid function } \Phi = \vec{a} \quad \Theta = (q, \lambda)$

EXAMPLE OF HYPERPARAMETERS

 Φ : Parameter space Θ : Hyperparameter space Neural networks $y = g_N(g_{N-1}((...g_1(x))))$ $\Phi = \{A_i, b_i\}$

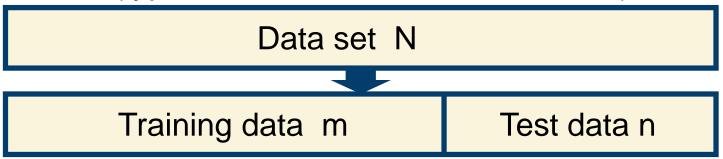
 $g = g_{N}(g_{N-1}((\dots,g_{1}(x)))) \qquad g = (m_{i}, o_{i})$ $g_{i}(x) = \sigma_{i}(A_{i}x + b_{i}), A_{i} \in \mathbb{R}^{m_{i} \times n_{i}}, b_{i} \in \mathbb{R}^{n_{i}} \quad \sigma_{i} : \mathbb{R}^{n_{i}} \to \mathbb{R}^{n_{i}}$ $L(y, \hat{y}) = -\sum_{i=1}^{N} y_{i} \log(\hat{y}_{i}) \qquad \text{Multi-label classification}$

Neural network hyperparameter Θ :

Learning rate, loss function, mini-batch Size, number of epochs, momentum, number of hidden units, weight decay, nonlinearity, weight initialization, random seeds and model averaging, layer types(full, convolution, pooling), batch normalization, layer connections, dropout...

HOLDOUT METHOD

Idea: Split the available data into training data and validation data (typical: validation data 20% to 40%)



1) Train parameters for fixed hyperparameters on training data according to the emphirical risk:

$$\hat{R}(f) := \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i))$$

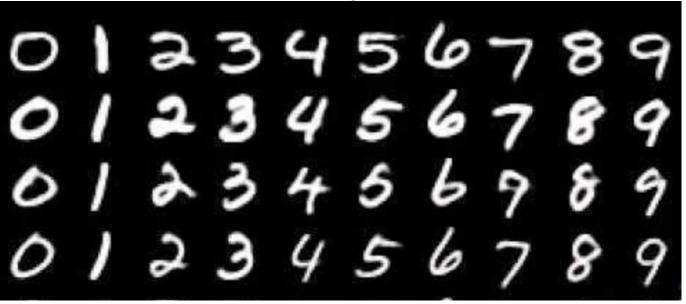
2) Repeat 1.) for several sets of hyperparameter and compare the models on the validation data

$$\hat{R}(f) := \frac{1}{n} \sum_{i=m+1}^{m+n} L(y_i, f(x_i))$$

HOLDOUT METHOD

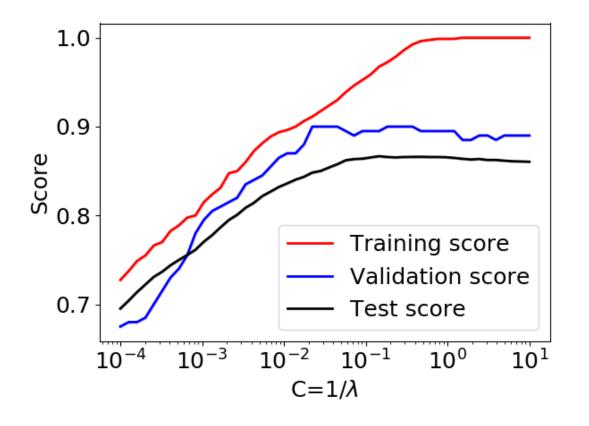
Example: Logistic ridge regression on MNIST Dataset $y = \sigma \left(\vec{a}^T \vec{x} \right), \ L(y, \hat{y}) = \sum_{i=1}^N y_i \log(\hat{y}_i) + (1 - y_i) \log(\hat{y}_i) + \lambda \|\vec{a}\|^2$ σ : Sigmoid function $\Phi = \vec{a} \ \Theta = \lambda \ \vec{x} \in \mathbb{R}^{784}$

MNIST Data (60k training data, 10k test data)



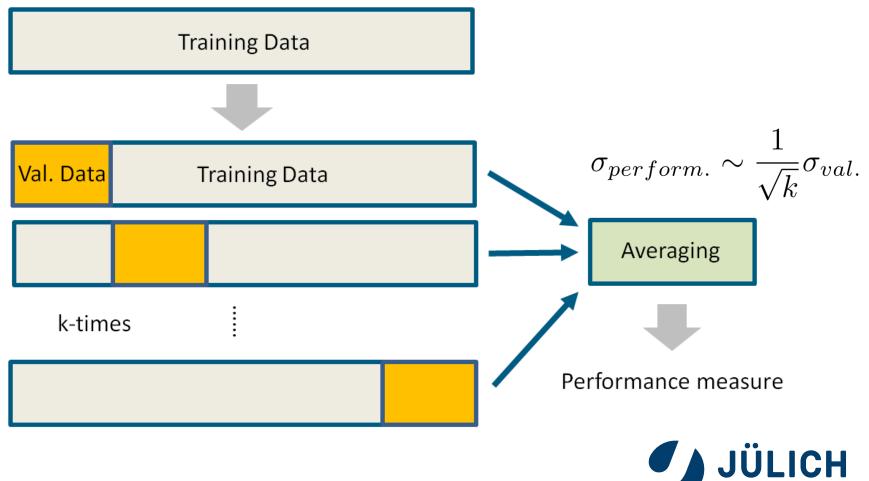
HOLDOUT METHOD

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000



CROSS VALIDATION

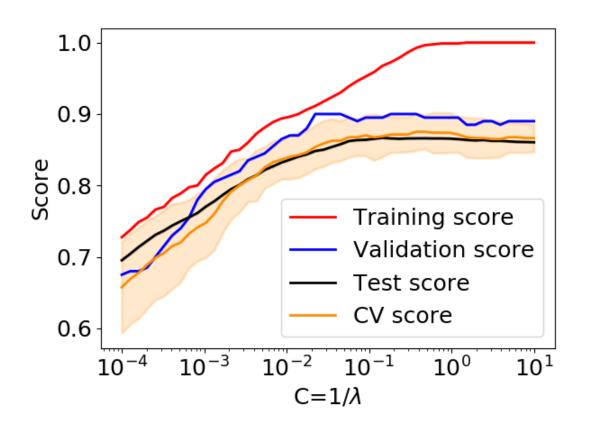
 Trainings data is divided into k non-overlapping patches (k-fold cross validation)



Forschungszentrum

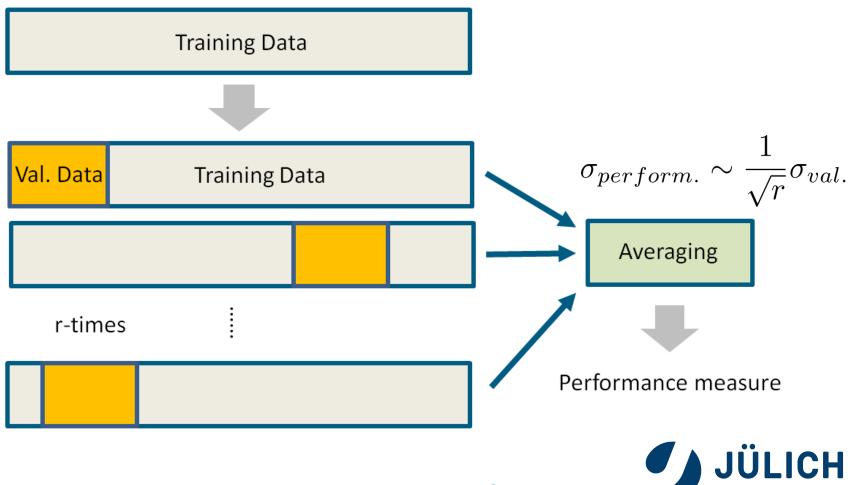
K-FOLD CROSS VALIDATION

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000 10-Fold cross-validation on 1000 samples



RANDOM SAMPLING

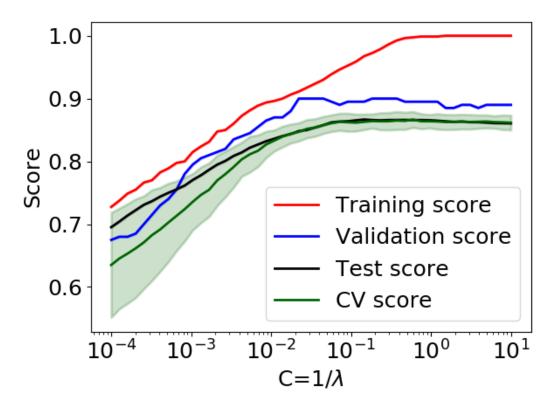
 Trainings data is divided into r random overlapping patches (repeated random sub-sampling validation)



Forschungszentrum

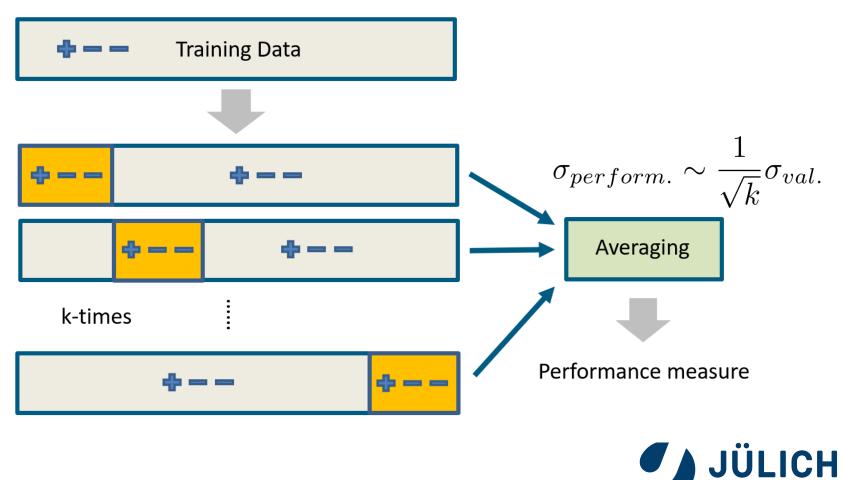
RANDOM SAMPLING

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000 random sampling with 40% validation data of 1000



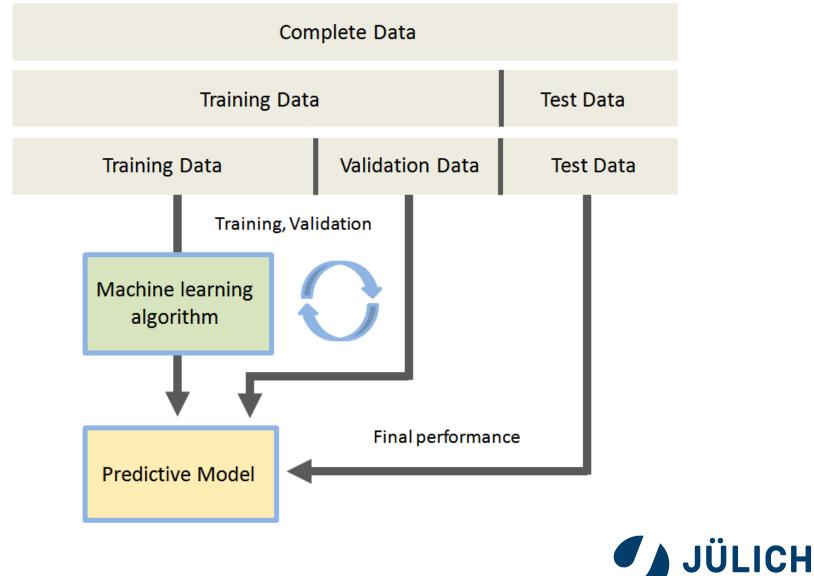
STRATISFIED CROSS-VALIDATION

 Trainings data is divided into k non-overlapping patches (k-fold cross validation) with stratified folds



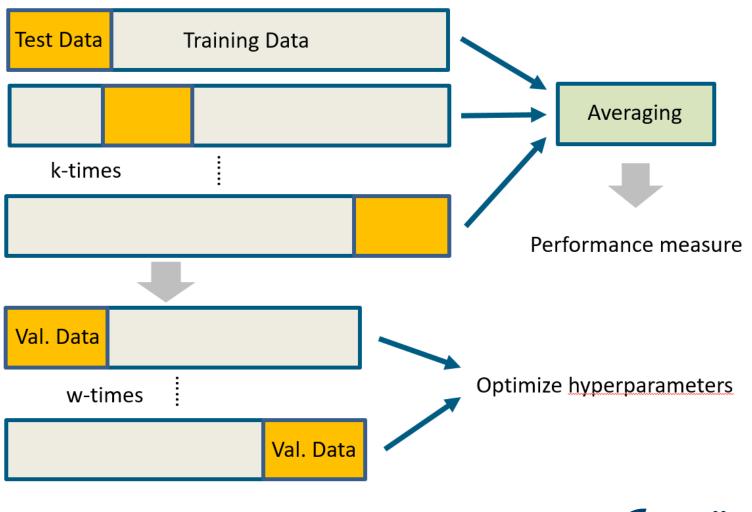
Forschungszentrum

MODEL COMPARISON



Forschungszentrum

NESTED CROSS-VALIDATION

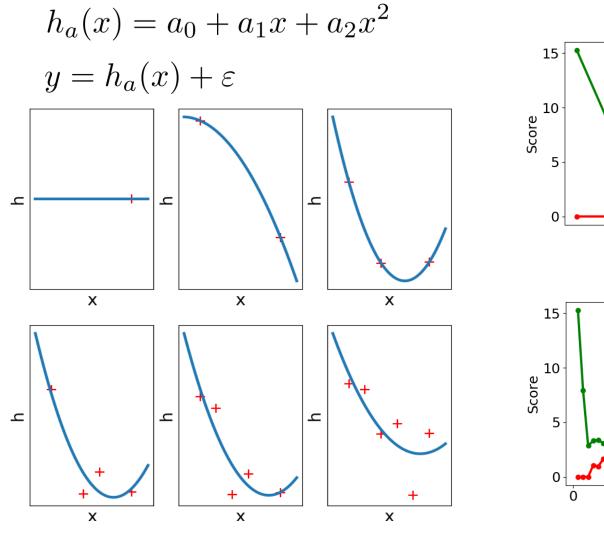


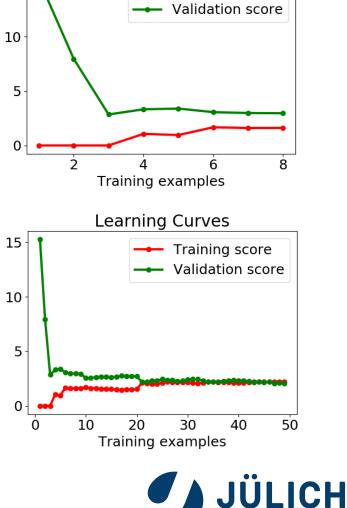
LEARNING CURVE

Cross validation allows to estimate the "sweet spot" but does not allow to judge if enough training data is used

- optimal tradeoff bewtween training and validation/test data
- the need to obtain more data
- Idea: Train the model on subsets of the training data and observe ist performance as amount of data used for training increases

LEARNING CURVE





Learning Curves

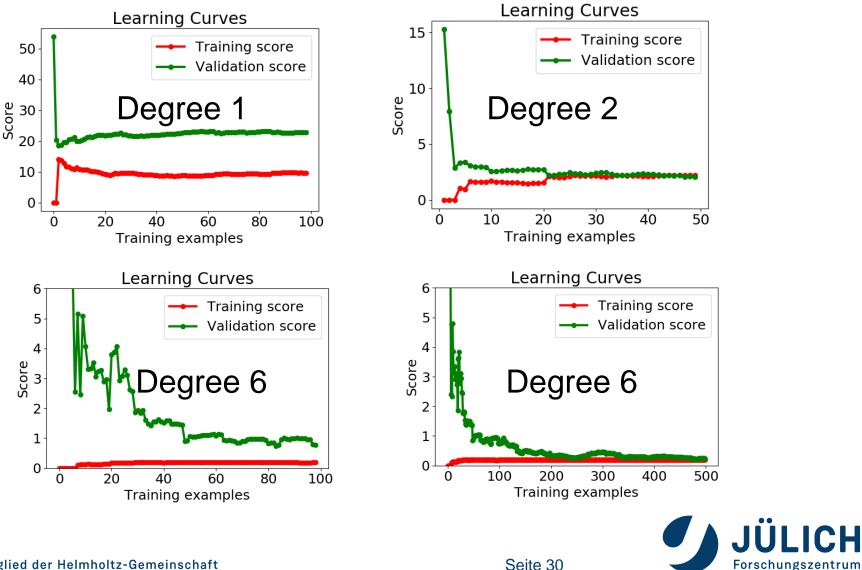
Training score

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

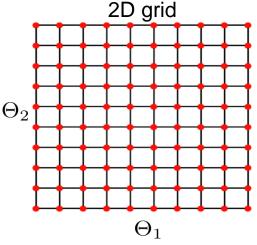
Seite 29

LEARNING CURVE



GRID SEARCH

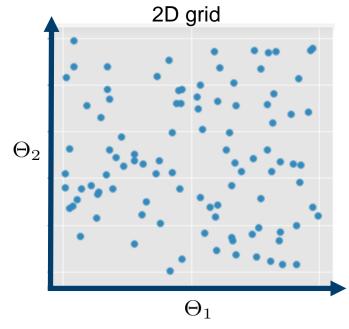
- Exhaustive search through a manually specified subset of the hyperparameter space
- Apply CV on each hyperparameter set
- Full parallelizable as model applied independently on each hyperparameter set
- Suffers from the curse of dimensionality, *e.g.* 10 hyperparameter per dimension
 10¹⁰ for dim=10



RANDOM SEARCH

Random search tend to be less expensive and time consuming because they do not examine every possible combination of parameters

Randomly selects a chosen number of hyperparameter sets from a given domain and tests only those



Mitglied der Helmholtz-Gemeinschaft

Seite 32

RANDOM SEARCH

Advantages:

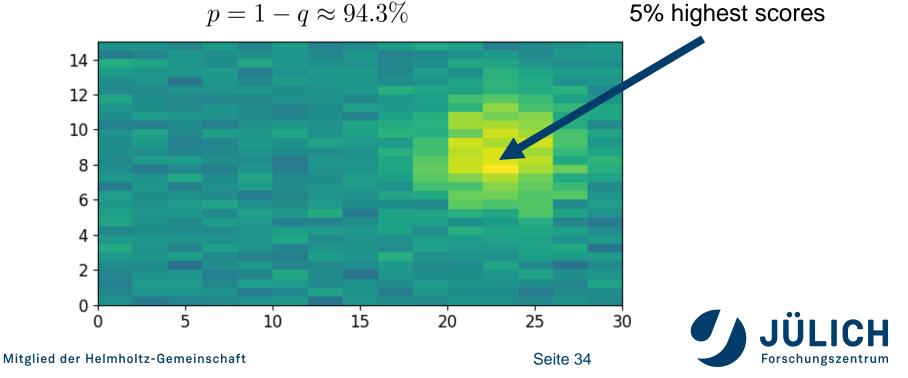
- The experiment can be stopped any time and the trials form a complete experiment
- New trials can be added to an experiment without having to adjust the grid and commit to a much larger experiment
- Scales independent of the input dimension
- Good coverage, e.g. if the region of hyperparameters that are near optimal occupies at least 5% of the grid, then random search with 60 trials will find that region with high probability (94%).

RANDOM SEARCH - EXAMPLE

Highlighted in green are the 21 pairings with the highest scores out of the 450 total combinations Probability not to hit the yellow area with 60 trials

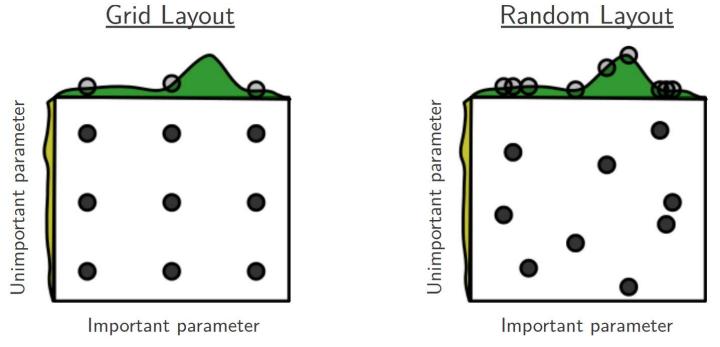
$$q = \left(1 - \frac{21}{450}\right)^{60} \approx 5.7\%$$

Probability to hit the green area with 60 trials



RANDOM SEARCH – GRID SEARCH

If some hyper-parameters are unimportant for the model grid search waste computing time



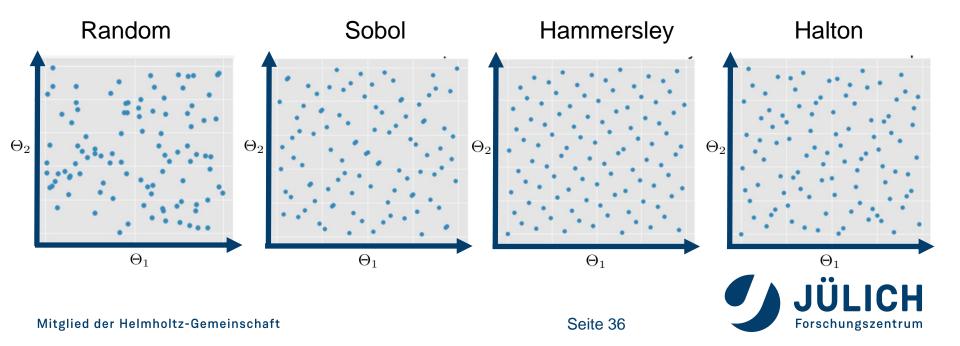
Bergstra and Bengio: Random Search for Hyper-Parameter Optimization, IJML, 2012

QUASI – RANDOM SEQUENCES

Few random samples tend to form clusters and wholes

Domain not covered evenly

Quasi-random sequence is a deterministic irrelgular sequence with the property that for all values of N, its subsequence $x_1, ..., x_N$ has a low discrepancy

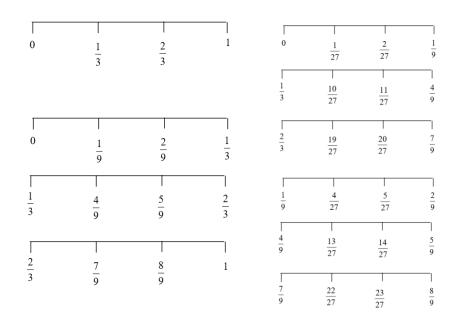


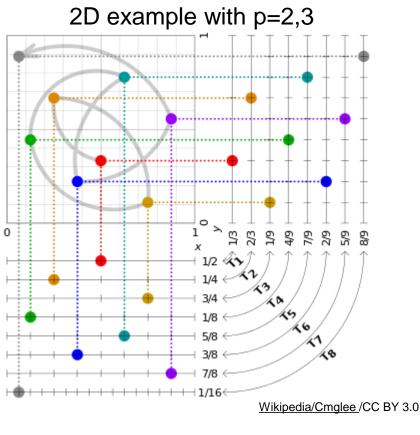
HALTON SEQUENCE

Sequence is constructed based on finer and finer prime based divisions of sub intervals of unit interval

Example: p=3

1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, 10/27, 19/27, 4/27, 13/27, 22/27, 7/27, 16/27, 25/27, 2/27, 11/27, 20/27, 5/27, 14/27, 23/27, 8/27, 17/27, 26/27





Seite 37

We can evaluate the empirical risk pointwise, but do not have an easy functional form or gradients

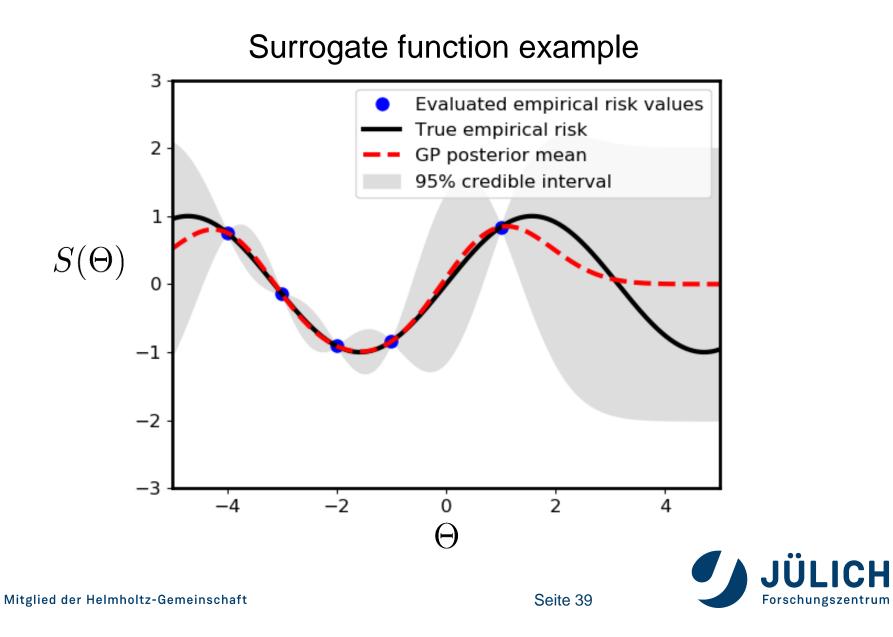
$$\hat{f} = \arg\min_{f \in \Lambda} \hat{R}(f)$$

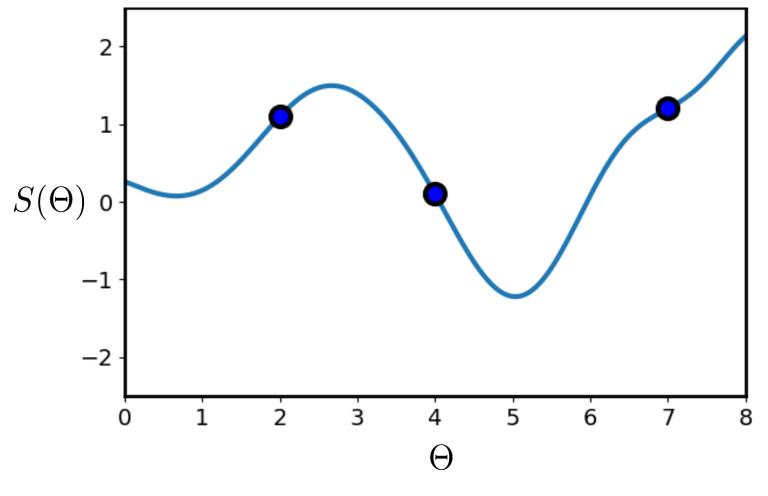
Idea: Learn a surrogate of the expected risk that is cheap to evaluate and provide an confidence interval to determine the next grid point

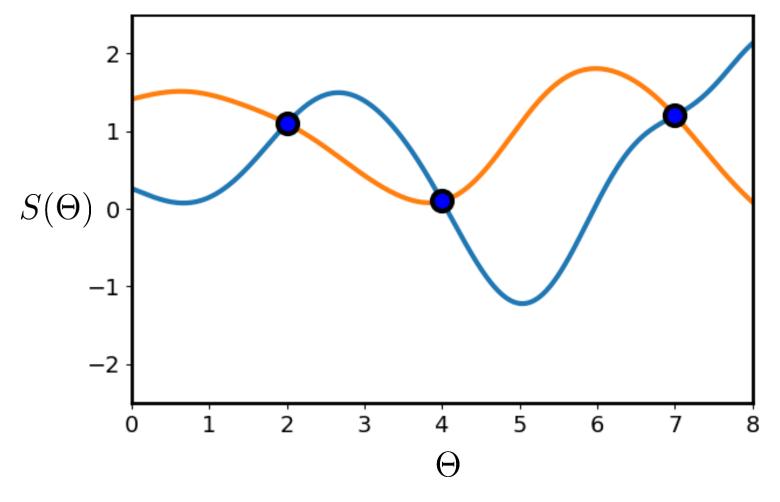
$$\hat{f} = \arg\min_{f \in \Lambda} S(f) \quad \sigma^2 \left(S(f) \right)$$

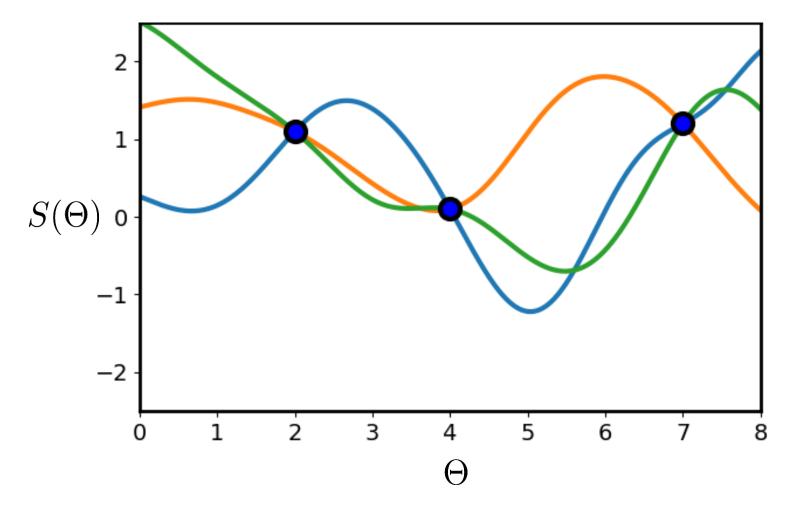
Search the hyperparameter space with

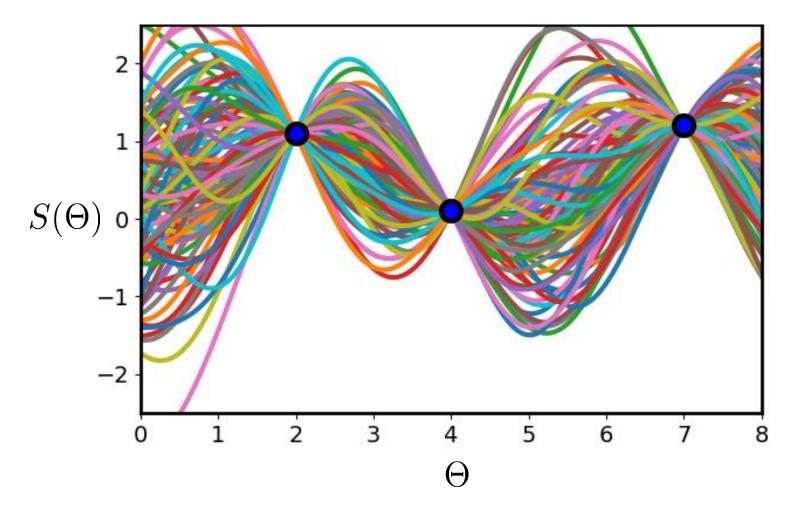
- **Exploration:** Seek places with high variance
- **Exploitation:** Seek places with low mean

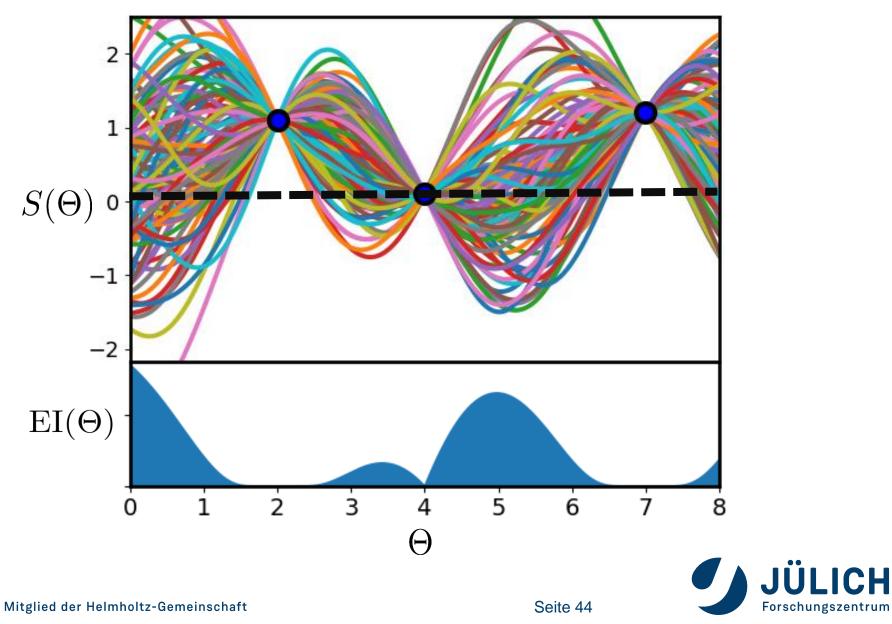






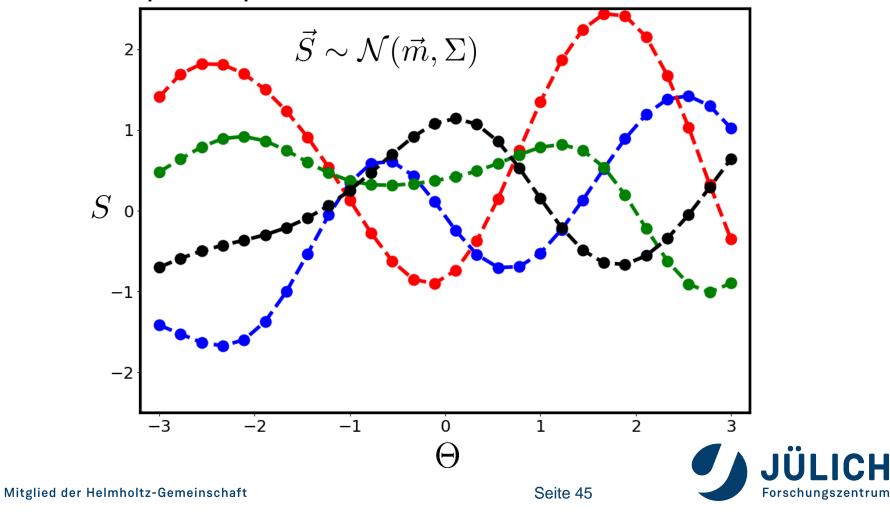






MULTIVARIATE GAUSSIAN

How to sample functions? Lets start with sampling from multivariate Gaussian and interpolate points



GAUSSIAN PROCESSES

A Gaussian process defines a probability distribution p(f)over functions $S: \mathbb{R}^N \to \mathbb{R}$

Notice: *S* is an infinite-dimensional quantity

No explicit probability distribution can be defined

Consider the vector $\vec{S} := (S(x_1), S(x_2), ..., S(x_N))$ of function values evaluated at finite number of positions

Definition: A Gaussian Process GP is a collection of random variables of which each finite sample is a multivariate Gaussian distribution $\vec{S} \sim \mathcal{N}(\vec{m}, \Sigma)$

GAUSSIAN PROCESSES

Definition: A Gaussian Process (GP) is a collection of random variables of which each finite sample is a multivariate Gaussian distribution

A Gaussian process is fully determined by its *mean* function $m(x) = \mathbb{E}[S(x)]$

and *covariance function* (kernel)

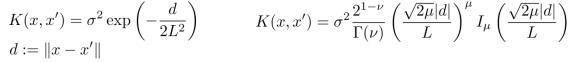
$$K(x, x') = \mathbb{E}[(S(x) - m(x))(S(x') - m(x'))]$$

KERNEL FUNCTIONS

Exponential kernel

RBF kernel

 $K(x, x') = \sigma^2 \exp\left(-\frac{d^2}{2L^2}\right)$



1.0

0.8

([[0:0]] X)) ([0:0] X))

0.2

0.0

-2

 $^{-1}$

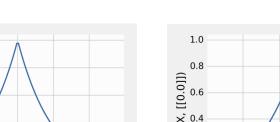
0

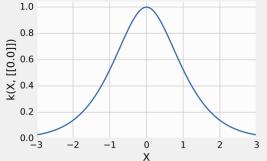
Х

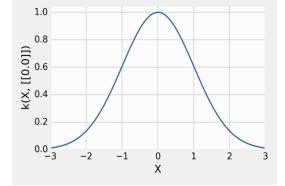
1

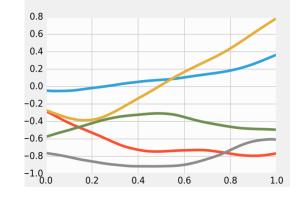
2

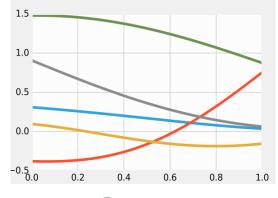
3











GAUSSIAN PROCESSES

- $y \in \mathbb{R}^m$ Observed samples
- $S \in \mathbb{R}^N$ Positions to be evaluated

$$(S,y) \sim \mathcal{N}\left(\vec{0}, \begin{pmatrix} K & K_* \\ K_* & K_{**} \end{pmatrix}\right) \Longrightarrow S|y \sim \mathcal{N}(m_{post.}, K_{post.})$$

Posterior mean

Posterior Covariance

$$m_{post.} = K_* K^{-1} y \qquad K_{post.} = K_{**} - K_* K^{-1} K_*^T$$

GAUSSIAN PROCESSES

Kernels need to be choosen (model selection) and kernel parameter have to be set

We are faced with additional hyperparameters

But GP allow to use additional hyperparameter Optimization techniques

- Marginal likelihood (evidence framework)
- Fully Bayesian approach

MAXIMUM LIKELIHOOD

(

The emphirical risk can be interpreted as the energy of a conditional probability density function (sampling pdf)

$$p(y|\Theta, \Phi) \propto \exp\left(-\alpha \hat{R}_N\right) \qquad \hat{R}_N := \frac{1}{N} \sum_{i=1}^N L(y_i, f_{\Theta, \Phi}(x_i))$$

A *consistent* and *efficient* estimator of the model parameters is given by maximum likelihood

$$\hat{\Phi} = \arg\max_{\Phi} p(y|\hat{\Theta}, \Phi)$$

Note: The hyperparameters are set to their estimate $\hat{\Theta}$

MARGINAL MAXIMUM LIKELIHOOD

M

In order to estimate the hyperparameters we can marginalize parameters of a GP in closed form

$$p(y|\Theta) = \int p(y|\Theta, \Phi)p(\Phi)d\Phi$$

= $-\frac{N}{2} \ln 2\pi - \frac{1}{2} \ln \det K - y^T K^{-1} y$
$$p(y|\Theta)$$

$$\hat{\Theta} = \arg \max_{\Theta} p(y|\Theta)$$

$$\hat{\Theta} = \arg \max_{\Theta} p(y|\Theta)$$

ACQUISITION FUNCTION

We need some criterion to select a new grid point based on our GP surrogate model

Probability of Improvement (Kushner 1964):

$$a_{pi}(x) = \Psi(\gamma(x))$$
 $\gamma(x) = \frac{S(x_{min}) - m_{post.}(x)}{\sigma_{post.}}$

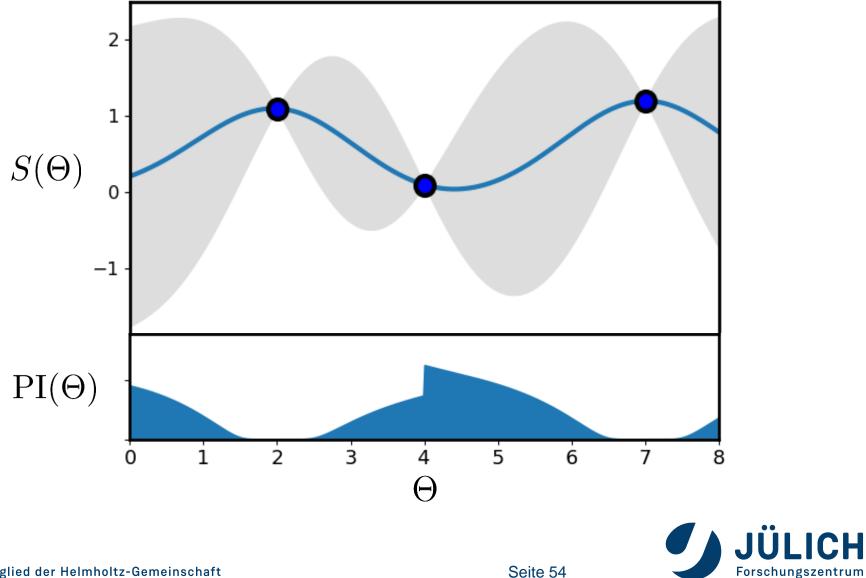
Expected Improvement (Mockus 1978):

$$a_{EI}(x) = \sigma_{post} \left(\gamma(x) \Psi(\gamma(x)) + \mathcal{N}(\gamma(x)|0,1) \right)$$

GP Upper Confidence Bound (Srinivas et al. 2010):

$$a_{UCB}(x) = \kappa \sigma_{post.} - m_{post.}$$

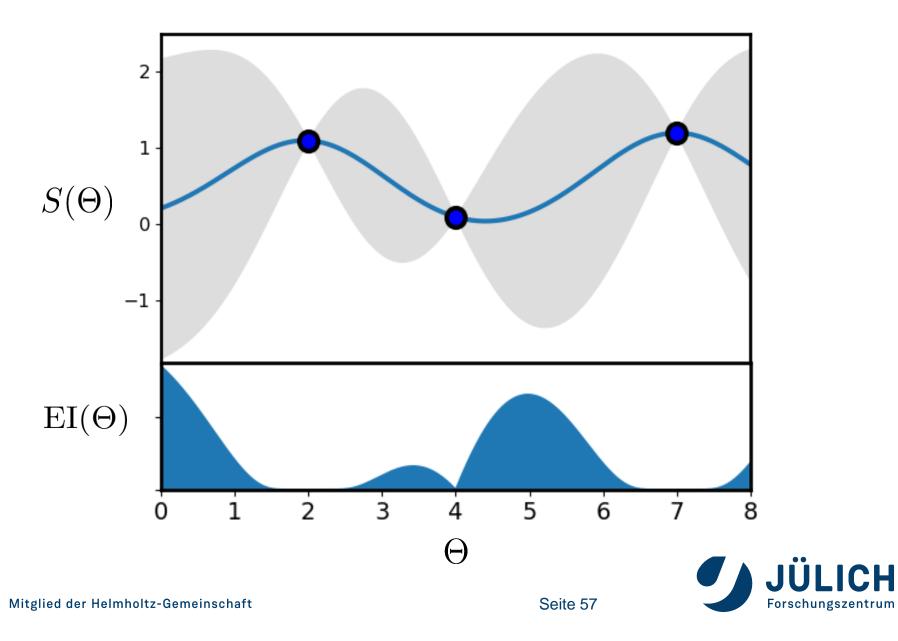
PROBABILITY OF IMPROVEMENT



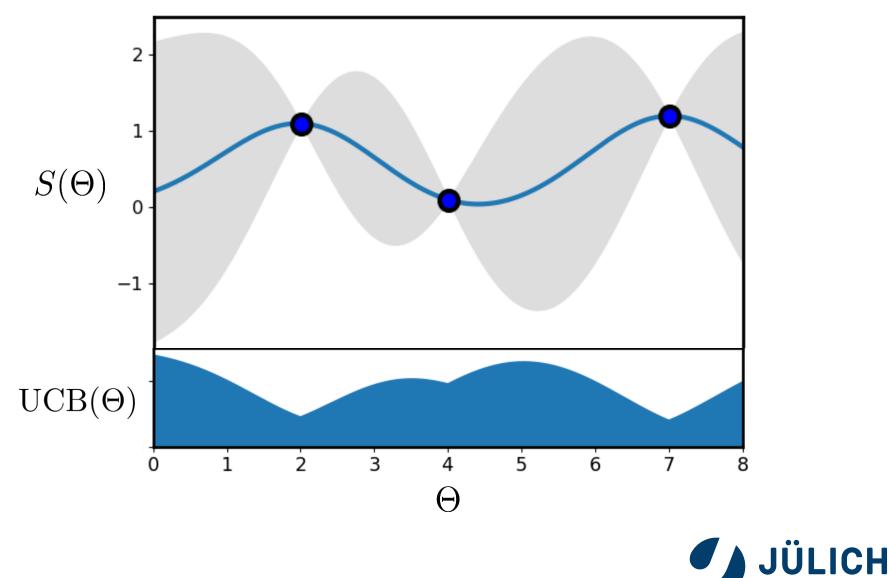
Mitglied der Helmholtz-Gemeinschaft

Seite 54

EXPECTED IMPROVEMENT



UPPER CONFIDENCE BOUND

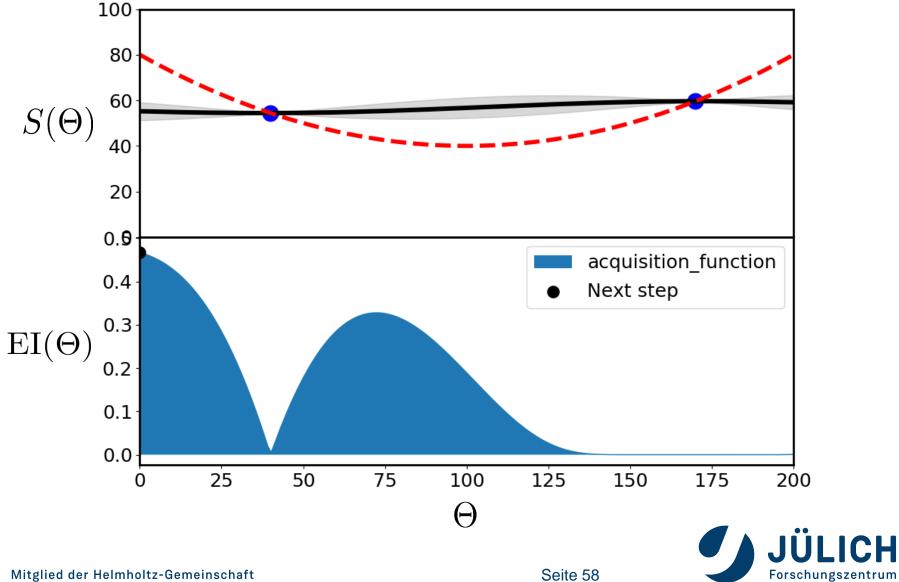


Mitglied der Helmholtz-Gemeinschaft

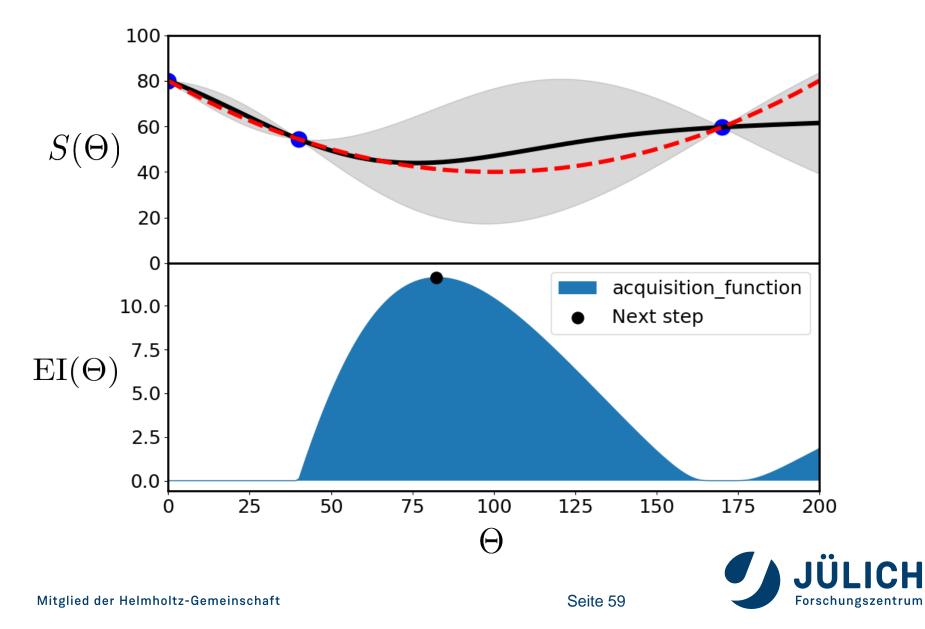
Forschungszentrum

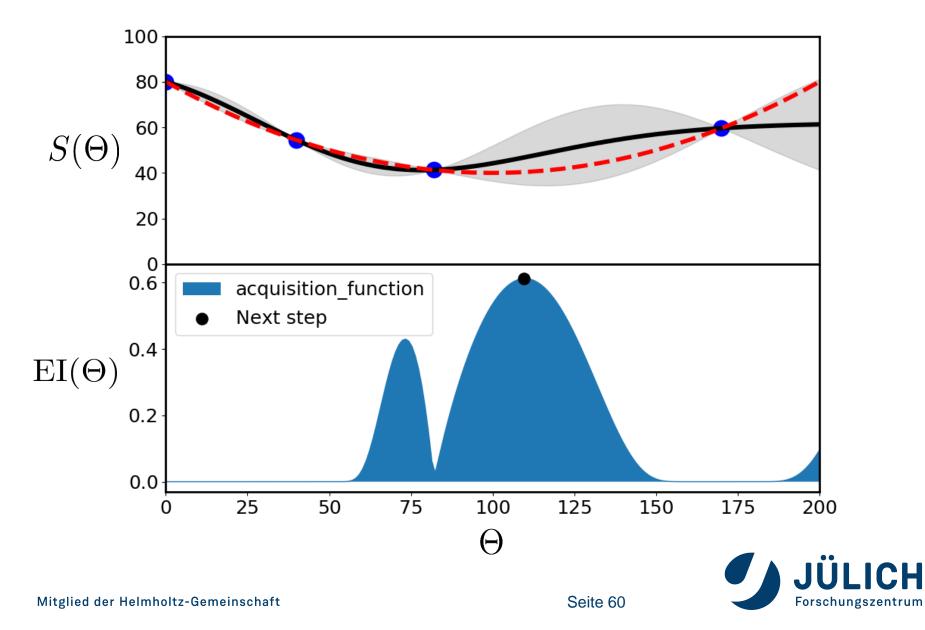
We combine all steps to Bayesian optimization

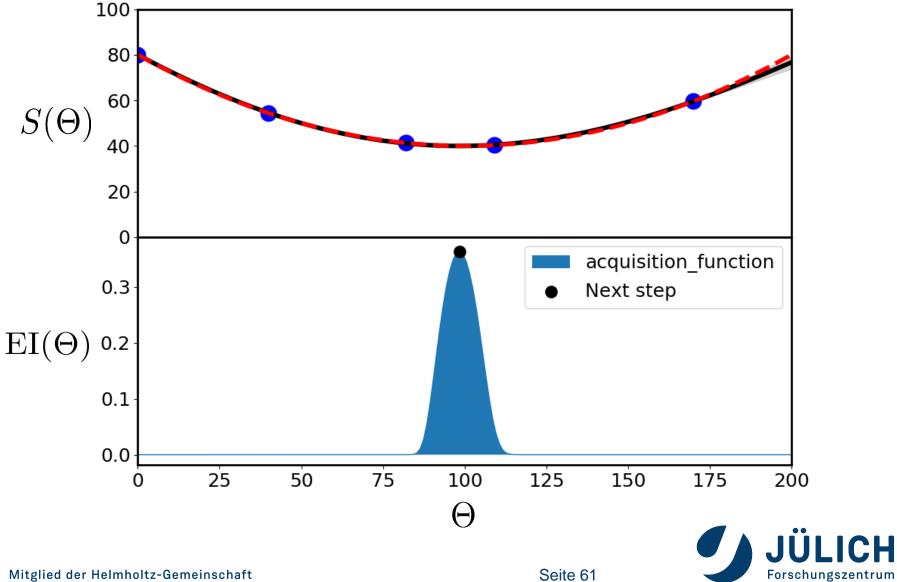
- 1) Evaluate $\hat{R}(f)$ for some grid points, e.g. random search
- 2) Estimate a GP surrogate model based on current grid points
- 3) Optimize GP hyperparameters by marginal ML
- 4) Compute an aquisition function
- 5) Select a new grid point by maximizing the aquisition function
- 6) Go to 2) or stop if $\hat{R}(f)$ does not change any more

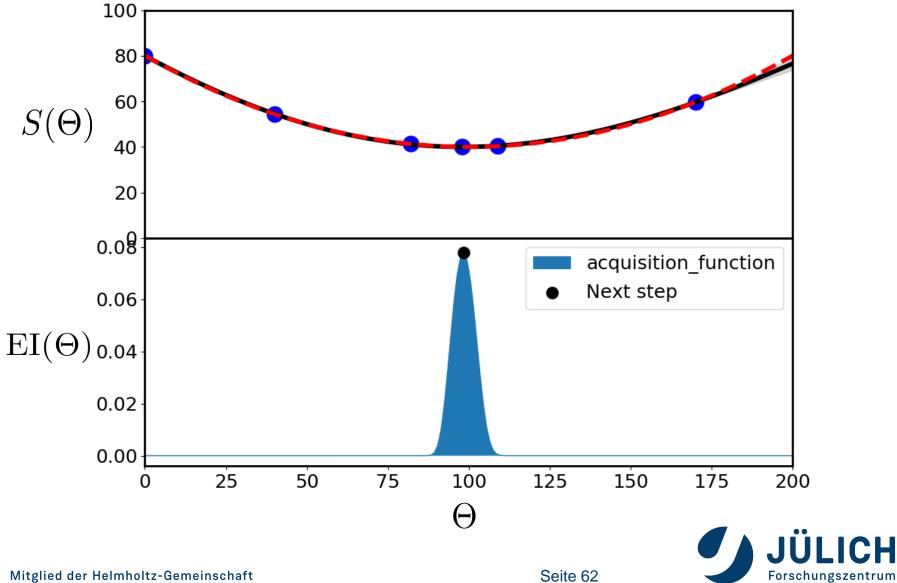


Seite 58









Mitglied der Helmholtz-Gemeinschaft

Seite 63