

Batch system - introduction

Andreas Baer KIT, SCC

Baden-Württemberg

Reference: bwHPC Wiki

Reference: NHR@KIT User Documentation

Intel Compilers

Material: Slides & Scripts

- https://indico.scc.kit.edu/e/hpc_course_2024-04-09
- BwUniCluster 2.0: /opt/bwhpc/common/workshops/2024-04-09/
- HoreKa: /software/all/workshop/2024-04-09/

How to read the following slides

Abbreviation/Colour code	Full meaning
\$ command -option value	<pre>\$ = prompt of the interactive shell The full prompt may look like: user@machine:path\$ The command has been entered in the interactive shell session</pre>
<pre><integer> <string></string></integer></pre>	<> = Placeholder for integer, string etc
foo, bar	Metasyntactic variables

Outline

- Batch system Why we need it and what it does.
- Job's life cycle
- 1./2. Preparation and Submission
- 3. Processing
- 4. Post processing
- Interactive jobs

Batch System

Resource management (1)

Individual computer: single user, single node

- Shared workstation: multiple users, single node
 - All users can execute commands
 - Concurrent tasks can cause slowdown of system
 - => users have to manage resources on their own

- HPC cluster: lots of users, lots of nodes
 - Users (as a group) cannot manage resources by hand: too many users and resources
 - => Resource management required

Resource management (2)

HPC cluster: lots of users, lots of nodes

Resource management (3)

- User logs on to a designated login node, not a compute node
- Jobs are **not** executed by the user directly, but put into a **queue**
- Batch system manages distribution of jobs to resources
- Batch system consists of two parts
 - Workload manager (scheduler)
 - Scheduling, managing, monitoring, reporting
 - SLURM (HoreKa, bwUniCluster 2.0, JUSTUS 2, Helix)
 - MOAB (NEMO, BinAC)
 - Resource manager
 - Control over jobs and distributed compute nodes
 - SLURM
 - TORQUE (for systems with MOAB)

Waiting time for jobs depends on:

- Job resource demands
- Demand history
- ONLY bwUniCluster 2.0: share of university

All examples here are for SLURM, MOAB works similarly but with different commands.

Job's life cycle

Job's life cycle (1)

(1) User creates a **job script** and submits it to Slurm via the "sbatch" command

```
#!/bin/bash
#SBATCH -p dev cpuonly
#SBATCH -N 1 -n 1
#SBATCH -t 00:01:00
#SBATCH --mem-per-cpu=500
./your simulation
```

(2) Slurm parses the job script: → where & when to run job Slurm (central management daemon) compute resources: Slurm compute node daemon

(3) Job execution: delegated to resource manager on the node

(4) The resource manager executes the job and communicates status information to nodes

Job's life cycle (2)

1. Preprocessing: setup job_script.sh:

```
#!/bin/bash
#SBATCH -p dev_single
#SBATCH -N 1 -n 1
#SBATCH -t 00:01:00
#SBATCH -mem-per-cpu=500
./your_simulation
```

1) Options for the job

2. Submit: ONLY with "sbatch" (for interactive jobs: "salloc")

```
$ sbatch job_script.sh
<job_ID>
```

3. Processing:

```
$ squeue
<job_ID> STATE: "PENDING" → "RUNNING" → "COMPLETED"
```

4. Post processing: job is finished → check output Default: slurm-<job_ID>.out 2) Actual work to be exectuted on the cluster

1./2. Job submission

1./2. Job submission: important resource parameters

Command line	Script	Purpose
-t time	#SBATCHtime=time	Wallclock time limit
-N nodes	#SBATCHnode=nodes	Number of nodes to be used
-n tasks	#SBATCHntasks=tasks	Number of tasks to be launched
-c count	#SBATCHcpus-per-task=count	Number of CPUs per (MPI-)task
ntasks-per-node=count	#SBATCHntasks-per-node=count	Number of (MPI-) tasks per node
mem=MB_value	#SBATCHmem=MB_value	Memory (in MB) per node
mem-per-cpu=MB_value	#SBATCHmem-per-cpu=MB_value	Memory per allocated core
-p queue	#SBATCHpartition=queue	Queue class to be used

- List of most used parameters can be found in the documentation
- Long and short options can be mixed arbitrarily but recommended as above

1./2. Job submission: partitions / queues

- A partition defines a specific queue=> submitted jobs will only wait for jobs in the same queue
- Partitions are used for different
 - Types of hardware (e.g. nodes with/without GPUs)
 - Purposes (e.g. development, production)
- Let's take a look at the hardware!

1./2. Job submission: hardware of bwUniCluster 2.0

	HPC nodes (Thin / HPC / IceLake)	Fat nodes	GPU nodes	IceLake + GPUx4
Number of nodes	200+60 / 360 / 272	6	14 (4 GPUs each) 10 (8 GPUs each)	15 (4 GPUs each)
Sockets per node	2/2/2	4	2	2
Cores per node	40 / 40 / 64	80	40	64
Main memory per node	96 GB, 192 GB / 96 GB / 256 GB	3 TB	384 GB 768 GB	512 GB
Local SSD	960 GB SATA / 1.8 TB NVMe	4.8 TB NVMe	3.2 TB NVMe 6.4 TB NVMe	6.4 TB NVMe
Interconnect (InfiniBand)	HDR 100 (blocking) / HDR 100 / HDR 200	HDR	HDR	HDR
GPUs	-	-	NVIDIA Tesla V100	NVIDIA A100 NVIDIA H100

1./2. Job submission: partitions of bwUniCluster 2.0 (selection)

Partition	Default resources	Min. resources	Max. resources
dev_single	time=10, mem-per-cpu=1125MB		time=00:30:00, nodes=1, mem=180000MB, ntasks-per-node=40
single	time=30, mem-per-cpu=1125MB		time=72:00:00, nodes=1, mem=180000MB, ntasks-per-node=40
multiple	time=30, mem-per-cpu=1125MB	nodes=2	time=72:00:00, nodes=128, mem=180000MB, ntasks-per-node=40
gpu_4	time=10, mem-per-cpu=2178MB, cpu-per-gpu=20		time=48:00:00, nodes=14, mem=376000MB, ntasks-per-node=40
fat	time=10, mem-per-cpu=18750MB		time=72:00:00, nodes=1, ntasks-per-node=80

Full list availbale at https://wiki.bwhpc.de/e/BwUniCluster2.0/Batch_Queues

Introductory Course: Batch System

1./2. Job submission: hardware of Horeka

	CPU only nodes	Extra-large nodes	GPU nodes
Number of nodes	570 + 32	8	167
Sockets per node	2	2	2
Cores per node	76	76	76
Main memory per node	256/512 GB	4096 GB	512 GB
Local SSD	960 GB NVMe	7x3.84 TB NVMe	960 GB NVMe
Interconnect (InfiniBand)	HDR	HDR	HDR
GPUs	-	-	NVIDIA A40 / A100

1./2. Job submission: partitions of HoreKa

Partition	Default resources	Min. resources	Max. resources
dev_cpuonly	time=10, ntasks=1, mem-per-cpu=1600MB	nodes=1, ntasks=152	time=04:00:00, nodes=12, mem=243200MB, ntasks-per-node=152
cpuonly	time=10, ntasks=152, mem-per-cpu=1600MB, mem=243200MB	nodes=1, ntasks=152	time=3-00:00:00, nodes=192, mem=501600MB, ntasks-per-node=152
dev_accelerated	time=30, ntasks=1 cpu-per-gpu=38, gres=gpu:1	nodes=1, ntasks=152, gres=gpu:1	time=01:00:00, nodes=1, mem=501600MB, ntasks-per-node=152, gres=gpu:4
accelerated	time=30, ntasks=152, mem=501600MB, cpu-per-gpu=38, gres=gpu:4	nodes=1, ntasks=152, gres=gpu:4	time=2-00:00:00, nodes=128, mem=501600MB, ntasks-per-node=152, gres=gpu:4
large	time=10, ntasks=1, mem-per-cpu=27130MB	nodes=1, ntasks=1	time=2-00:00:00, nodes=8, mem=4123930MB, ntasks-per-node=152

1./2. Job submission: available resources

- Check available resources via \$ sinfo_t_idle
- Be careful: a node planned for another job is counted "idle" but will not start a job

```
xy_ab1234@bwunicluster:~$ sinfo_t_idle
Partition dev_single : 6 nodes idle
Partition single : 0 nodes idle
Partition dev_multiple : 8 nodes idle
Partition multiple : 3 nodes idle
           : 0 nodes idle
Partition fat
Partition dev_multiple_e: 8 nodes idle
Partition multiple_e : 3 nodes idle
Partition dev_special : 2 nodes idle
Partition special : 0 nodes idle
Partition gpu_4
                   : 0 nodes idle
Partition dev_gpu_4 : 1 nodes idle
Partition gpu_8
                         0 nodes idle
```

```
xy_ab1234@horeka:~$ sinfo_t_idle

Partition dev_cpuonly : 1 nodes idle
Partition cpuonly : 101 nodes idle
Partition dev_accelerate : 1 nodes idle
Partition accelerate : 83 nodes idle
```

Tutorial 1a

- **Goal:** use the batch system to execute **printery** on the cluster
- 1. Create a file "submit_script.sh" and set the following options for the batch system.
 - 1 task
 - 500 MB memory
 - Wall time: 5 minutes
- 2. Insert the command to be executed at the end of the jobscript
- 3. Save the jobscript and submit it to the batch system with

```
#!/bin/bash
#SBATCH [???]
#SBATCH --time=[???]
#SBATCH --mem=500

[?????]
```

```
$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster
$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka
```

- You can use **squeue** to see the status of the job.
- 4. Look in the output file of your job (slurm-<jobID>.out) for variables starting with "SLURM_". These can be used to get information on how the job was started.

(Errors can occur when copying commands from the pdf, as not all dashes "-" are dashes in the pdf.)

Tutorial 1a - Solution

- **Goal:** use the batch system to execute **printerv** on the cluster
- 1. Create a file "submit_script.sh" and set the following options for the batch system.
 - 1 task
 - 500 MB memory
 - Wall time: 5 minutes
- 2. Insert the command to be executed at the end of the jobscript
- 3. Save the jobscript and submit it to the batch system with

```
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --time=00:05:00
#SBATCH --mem=500
printenv
```

```
$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster
$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka
```

- You can use squeue to see the status of the job.
- 4. Look in the output file of your job (slurm-<jobID>.out) for variables starting with "SLURM_". These can be used to get information on how the job was started.
 - Example: "SLURM_JOB_PARTITION=cpuonly" means: the job was submitted to the partition "cpuonly". We specified this on the command line but not on the script.

Tutorial 1b

- **Goal**: learn about option precedence.
- 1. Modify your script so that instead of executing printenv, the value of "SLURM_NPROCS" is printed (Hint: use echo)
- **2**. Submit your job again, but this time use **sbatch** to specify the number of processes:

```
$ sbatch -p single --reservation=ws -n 4 submit_script.sh # bwunicluster
$ sbatch -p cpuonly --reservation=ws -n 4 submit_script.sh # horeka
```

- 3. Check in your output file what the number of processes used is:
 - "1" as specified in the script
 - "4" as specified on the command line

Tutorial 1b - Solution

- **Goal**: learn about option precedence.
- 1. Modify your script so that instead of executing printenv, the value of "SLURM_NPROCS" is printed (Hint: use echo)
- **2**. Submit your job again, but this time use **sbatch** to specify the number of processes:

```
$ sbatch -p single --reservation=ws -n 4 submit_script.sh # bwunicluster
$ sbatch -p cpuonly --reservation=ws -n 4 submit_script.sh # horeka
```

- 3. Check in your output file what the number of processes used is:
 - "1" as specified in the script
 - "4" as specified on the command line
 - => The output file contains:

4

```
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --time=00:05:00
#SBATCH --mem=500
echo "$SLURM_NPROCS"
```

=> The options given on the command line take precedence over the options provided in the script.

3. Processing

3. Processing

- After job submission: job-ID is printed if successful
- "Monitoring" via:
 - 3.a Simple information on job status

squeue

sacct

3.b Extensive details on the job

scontrol show job <job-ID>

3.c Login onto the compute node

srun --jobid=<id> --pty [--overlap] /usr/bin/bash

- "Modifying" via:
 - 3.d Cancel the job

scancel <job-ID>

\$ sbatch submit_script.sh
Submitted batch job 1487560

3.a Processing - squeue

Check status of a job after submission

```
$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1487570 dev_cpuon submit_s ab1234 R 0:05 1 hkn0301
```

```
$ squeue --long
JOBID PARTITION NAME USER STATE TIME TIME_LIMI NODES NODELIST(REASON)
1487570 dev_cpuon submit_s ab1234 RUNNING 2:49 10:00 1 hkn0301
```

Job states:

PD = PENDING

R = RUNNING

CD = COMPLETED

F = FAILED

CA = CANCELLED

While job is pending: what is the expected start time?

```
$ squeue --start

JOBID ... START_TIME SCHEDNODES

1487570 ... 2021-10-14T10:10:10 hkn0301
```

3.a Processing - sacct

Obtain accounting information of a job

<pre>\$ sbatch submit_script.sh Submitted batch job 1487652</pre>						
\$ sacct -j 14	\$ sacct -j 1487652					
JobID	${\tt JobName}$	Partition	Account	AllocCPUS	State	ExitCode
1487652	<pre>submit_sc+</pre>	dev_single	kit	2	RUNNING	0:0
1487652.bat+	batch		kit	2	RUNNING	0:0
1487652.ext+	extern		kit	2	RUNNING	0:0
1487652.0	hostname		kit	2	COMPLETED	0:0
1487652.1	bash		kit	2	RUNNING	0:0

3.b Processing – scontrol show job (1)

1) Consumed resources Obtain detailed information on the job will be booked on your \$ scontrol show job <job-ID> university / project JobId=1487569 JobName=submit script.sh UserId=ab1234(27049) GroupId=scc(12345 2) Your job state Priority=4298 Nice=0 Account=kit QOS=normal JobState=RUNNING Reason=Prolong Dependency=(null) Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0 3) Your time logging RunTime=00:00:19 TimeLimit=00:10:00 TimeMin=N SubmitTime=2021-10-13T00:06:58 EligibleTime=2021-10-13... AccrueTime=2021-10-13T00:06:59 StartTime=2021-10-13T00:06:59 EndTime=2021-10-13T00:16:59 SuspendTime=None SecsPreSuspend=0 LastSchedEval=... 4) Your selected partition Partition=dev_single AllocNode:Sid=uc2n997:2170796 ReqNodeList=(null) ExcNodeList=(null) 5) Your node list and NodeList=uc2n362 Node on which job BatchHost=uc2n362 started

3.b Processing – scontrol show job (2)

Obtain detailed information on the job

```
$ scontrol show job <job-ID>
JobId=1487569 JobName=submit_script.sh
   NumNodes=1 NumCPUs=2 NumTasks=1 CPUs/Task=1
   TRES=cpu=2,mem=2250M,node=1,billing=2
   Socks/Node=* NtasksPerN:B:S:C=0:0:*:1 CoreSpec=*
   MinCPUsNode=1 MinMemoryCPU=1125M MinTmpDiskNode=0
   Features=(null) DelayBoot=00:00:00
   OverSubscribe=OK Contiguous=O Licenses=(null) ...
   Command=/pfs/data5/home/kit/scc/ab1234/submit script.sh
   WorkDir=/pfs/data5/home/kit/scc/ab1234
   StdErr=/pfs/data5/home/kit/scc/ab1234/slurm-1487569.out
   StdOut=/pfs/data5/home/kit/scc/ab1234/slurm-1487569.out
```

- 1) Your requested nodes & CPU cores
- 2) Your job memory
- 3) Actual node policy
- 4) Your submit directory & submit script

5) Your job standard output and error log file

3.c Processing – Login onto compute node

While the job is running (state = \mathbf{R}): login to dedicated compute nodes is possible:

```
ab1234@hkn1990:~$ sbatch submit_script.sh
Submitted batch job 1487652

ab1234@hkn1990:~$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487652 dev_cpuon submit_s ab1234 R 2:42 1 hkn0301

ab1234@hkn1990:~$ srun --jobid=1487652 --pty [--overlap] /usr/bin/bash
ab1234@hkn0301:~$
```

srun adds another step to your job. Once **main job finishs**, job step is **cancelled** automatically.

```
ab1234@hkn0301:~$
slurmstepd: error: *** STEP 1487652.2 ON hkn0301 CANCELLED AT 2021-10-13T10:35:52 ***
exit
srun: Job step aborted: Waiting up to 32 seconds for job step to finish.
ab1234@hkn1990:~$
```

3.d Processing - Cancel the job

- You can cancel your job, e.g. if
 - Submitted wrongly
 - Job does not behave as expected

```
$ sbatch submit_script.sh
Submitted batch job 1487683

$ scancel 1487683
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487683 dev_cpuon submit_s ab1234 R 2:42 1 hkn0301
```

Check with sacct:

Tutorial 2

- **Goal:** practice monitoring and cancelling of jobs.
- 1. Modify your script such that it executes a command to wait for 600 seconds (sleep 600)
- 2. Set a walltime of 10 minutes and give a name to your job.
- 3. Submit your job script with sbatch.
- 4. Use squeue to check the status.
- 5. Use **scontrol show job** to see from which directory you started the job.
- 6. Use scancel <job-ID> to cancel your job.

Tutorial 2 - Solution

- Goal: practice monitoring and cancelling of jobs.
- 1. Modify your script such that it executes a command to wait for 600 seconds (sleep 600)
- 2. Set a walltime of 10 minutes and give a name to your job.
- 3. Submit your job script with sbatch.

```
#!/bin/bash
#SBATCH -N 1 -n 1
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=500
#SBATCH -J myJobName
sleep 600
```

```
$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster
$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka
```

- 4. Use squeue to check the status.
- 5. Use scontrol show job to see from which directory you started the job.

```
$ scontrol show job 1487685 | grep WorkDir
WorkDir=/pfs/data5/home/kit/scc/ab1234/workshop
```

6. Use **scancel <job-ID>** to cancel your job.

Interactive jobs

Interactive jobs

Jobs on login nodes are not permitted

Sometimes interactive access is required (e.g. for debugging, heavy compilation jobs, etc.)

=> interactive slurm jobs Job is waiting to start, Do ab12340hkn1990:~\$ salloc -p cpuonly -n 1 -t 10 --mem=2000 Not interupt the command salloc: Granted job allocation 1487738 salloc: Waiting for resource configuration salloc: Nodes hkm0301 are ready for job Job running. You are now on a compute node ab1234@hkn0301:~\$ {Now you can work on the compute node} salloc: Job 1487738 has exceeded its time limit and its allocation has been revoked. srun: Job step aborted: Waiting up to 32 seconds for job step to finish. slurmstepd: error: *** STEP 1487738.interactive ON hkn0301 CANCELLED AT 2021-10-13T13:02:41 DUE TO TIME LIMIT *** exit Requested time for the srun: error: hkn0301: task 0: Exited with exit code 127 interactive job ran out ab1234@hkn1990:~\$

Back on the login node

Thank you for your attention.

Questions?

