ST INHR

National High-Performance Computing Center

Batch system - introduction

Andreas Baer
KIT, SCC

https://www.bwhpc.de/
https://www.nhr.kit.edu/

Reference: bwHPC Wiki

@ Most information given by this talk
can be found at https://wiki.bwhpc.de
@ select cluster

@ then select Batch System

R

WIKL

bw|HPC

bwUniCluster 2.0

Helix
NEMO
BinAC

Documentation
Registration

Running Calculations
Software Modules
Software Search

HPC Glossary

Support
elearning
Ticketing System
Feedback

Data Storage

sDs@hd
bwDataArchive

Tools

What links here
Related changes
Special pages
Printable version
Permanent link
age information

BwUniCluster2.0

The bwuUniCluster 2.0 is the joint high-performance computer system of Baden-Wirttemberg's Universiti
at the steinbuch Centre for Computing (SCC) at Karlsruhe Institute of Technology (KIT). The bwUniCluster :

The following issue is known: Due to the hardware configuration, there is currently an already known |
schemes reported" when starting an MPI application and refers to the device "mix5_2". This is an Etherne!

Next maintenance

Due to regular maintenance work the HPC System bwUnicluster 2 will not be available from
21.05.2024 at 08:30 AM until 24.05.2024 at 15:00 AM

Please see the maintenance page for more information about planned upgrades and other changes
Training & Support

+ Getting Started

« E-Learning Coursesg

« Support

« FAQ

« Send Feedback about Wiki pages

User Documentation

« Access: Registration, Deregistration, Using Jupyter, Using Jupyter (German)
« Login
« Hardware and Architecture

« File Systems and Workspaces
« Cluster Specific Software

« Batch System

+ Queues and interactive Jobs

Cluster Funding

+ Please acknowledge bwUniCluster 2.0 in your publications.

https://wiki.bwhpc.de/

Reference: NHR@KIT User Documentation

@ Most information given by this talk
can be found at https://www.nhr kit.edu/userdocs

@ select cluster
@ then select Batch System

kit.edu

SKITINHR

HoreKa

HoreKa

QOverview

Project management
Project proposals

Manage project contributors
Project accounting

Acknowledgements

Using HoreKa or HAICORE
Account Registration
2-Factor Authentification
Interactive login

Hardware Overview

File Systems

Software

Compilers & Runtimes
Compilers overview
GNU Compiler Collection (GCC)

Intel Compilers

NHR@KIT User Documentation

AICORE Future Tec| Partition (FTP)

Batch system

As described in the Hardware Overview chapter, us
compute nodes is only possible through the so-cal

Slurm is an open source, fault-tolerant, and highly
Slurm fulfills three key functions:

1. It allocates exclusive and/or non-exclusive act
of time so they can perform work.

2. It provides a framework for starting, executing

3. It arbitrates contention for resources by mana

Any kind of calculation on the compute nodes of I

specification of the required run time, number of C

some metadata is called a batch job. Batch jobs h:
as the system decides to run them.

HoreKa batch system partitions

mailto:NHR@KIT
https://www.nhr.kit.edu/userdocs/

Material: Slides & Scripts

B https://indico.scc.kit.edu/e/hpc_course_2024-04-09
@ BwuUniCluster 2.0: /opt/bwhpc/common/workshops/2024-04-09/
@ HoreKa: /software/all/workshop/2024-04-09/

How to read the following slides

$ command -option value $ = prompt of the interactive shell
The full prompt may look like:

user@machine:path$
The command has been entered in the
interactive shell session

<integer> <> = Placeholder for integer, string etc
<string>

foo, bar Metasyntactic variables

https://indico.scc.kit.edu/e/hpc_course_2024-04-09

Outline

Batch system - Why we need it and what it does.

Job’s life cycle

1./2. Preparation and Submission

3. Processing

4. Post processing

Interactive jobs

Resource management (1)

® Individual computer: single user, single node & Login, Manage files, Execute commands, ..., £

@ Shared workstation: multiple users, single node
@ All users can execute commands

@ Concurrent tasks can cause slowdown of system >
=> users have to manage resources on their own ___ login, Manage files, Execute commands, ...

@ HPC cluster: lots of users, lots of nodes
@ Users (as a group) cannot manage resources by hand: too many users and resources
=> Resource management required

Login, Manage files,
Execute
commands, ...

Resource management (2)

& HPC cluster: lots of users, lots of nodes

Login, Manage files,
Execute
commands, ...

Compute nodes
Login, Manage files, ...

Queue jobs Batch system

with job queue

Resource management (3)

@ User logs on to a designated login node, not a compute node
@ Jobs are not executed by the user directly, but put into a queue

@ Batch system manages distribution of jobs to resources Waiting time for jobs depends on:

@ Batch system consists of two parts Job resource demands
@ Workload manager (scheduler) Demand history

@ Scheduling, managing, monitoring, reporting ONLY bwUniCluster 2.0
® SLURM (HoreKa, bwUniCluster 2.0, JUSTUS 2, Helix) L e
, share of university

& MOAB (NEMO, BinAC)

@ Resource manager
@ Control over jobs and distributed compute nodes
® SLURM
@ TORQUE (for systems with MOAB)

All examples here are for SLURM, MOAB works similarly but with different commands.

Job’s life cycle (1)

(1) User creates a job script and (2) Slurm parses the job script:

submits it to Slurm via the .
— where & when to run job
“sbatch” command \ J

Slurm

#!/bin/bash (central management daemon)
#SBATCH -p dev_cpuonly

#SBATCH -N 1 -n 1
#SBATCH -t 00:01:00 (3) Job execution:

#SBATCH --mem-per-cpu=500 delegated to resource
manager on the node

./your_simulation

compute resources:
Slurm compute node daemon

(4) The resource manager executes the job and communicates
status information to nodes

Job’s life cycle (2)

@ 1. Preprocessing: setup job_script.sh: | 41 /bin/bash

#SBATCH -p dev_single
#SBATCH -N 1 -n 1
#SBATCH -t 00:01:00
#SBATCH -mem-per-cpu=500

./vour simulation

@ 2. Submit: ONLY with “sbatch” (for interactive jobs: “salloc”)

$ sbatch job_script.sh
<job_ID>

. Processing:

$ squeue
<job_ID> STATE: "PENDING" -+ "RUNNING" - "COMPLETED"

@ 4. Post processing: job is finished = check output
Default: slurm-<job_ID>.out

1./2. Job submission: important resource parameters

Command line

-t time

-N nodes

-n tasks

-c count
--ntasks-per—-node=count
—--mem=MB_wvalue
—--mem-per-cpu=MB_wvalue

-p queue

Script

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

#SBATCH

-—time=%time
--node=nodes
-—-ntasks=tasks
—--cpus-per-task=count
--ntasks-per-node=count
—--mem=MB_wvalue
—-—mem-per-cpu=MB_value

-—partition=queue

@ List of most used parameters can be found in the documentation

Purpose

Wallclock time limit

Number of nodes to be used
Number of tasks to be launched
Number of CPUs per (MPI-)task
Number of (MPI-) tasks per node
Memory (in MB) per node
Memory per allocated core

Queue class to be used

@ Long and short options can be mixed arbitrarily but recommended as above

1./2. Job submission: partitions / queues

@ A partition defines a specific queue
=> submitted jobs will only wait for jobs in the same queue

Partitions are used for different

@ Types of hardware (e.g. nodes with/without GPUs)
@ Purposes (e.g. development, production)

Let’s take a look at the hardware!

1./2. Job submission: hardware of bwUniCluster 2.0

HPC nodes (Thin/ Fat nodes GPU nodes IceLake + GPUx4
HPC | IceLake)
Number of nodes 200+60/ 360/ 272 6 14 (4 GPUs each) 15 (4 GPUs each)
10 (8 GPUs each)
Sockets per node 21212 4 2 2
Cores per node 40/ 40/ 64 80 40 64
Main memory per 96 GB, 192 GB/ 3TB 384 GB 512 GB
node 96 GB / 256 GB 768 GB
Local SSD 960 GB SATA/ 4.8 TB NVMe 3.2 TB NVMe 6.4 TB NVMe
1.8 TB NVMe 6.4 TB NVMe
Interconnect HDR 100 (blocking) / HDR HDR HDR
(InfiniBand) HDR 100 / HDR 200
GPUs - - NVIDIA Tesla V100 NVIDIA A100
NVIDIA H100
16 2024/04/09 Introductory Course: Batch Syst NI R =
ECIEOREEEEE EE e I\latior\!&h!lm!nce ca}hsuﬁn;'c;;nte; BHEC - ﬁ

Partition

dev_single

single

multiple

gpu_4

fat

1./2. Job submission: partitions of bwUniCluster 2.0 (selection)

Default resources

time=10,
mem-per-cpu=1125MB

time=30,
mem-per-cpu=1125MB

time=30,
mem-per-cpu=1125MB

time=10,

mem-per-cpu=2178MB,

cpu-per-gpu=20
time=10,

mem-per-cpu=18750MB

Min. resources

nodes=2

Max. resources

time=00:30:00, nodes
mem=180000MB,
ntasks-per-node=40

time=72:00:00, nodes
mem=180000MB,
ntasks-per-node=40

time=72:00:00, nodes
mem=180000MB,
ntasks-per-node=40

time=48:00:00, nodes
mem=376000MB,
ntasks-per-node=40

time=72:00:00, nodes
ntasks-per-node=80

Full list availbale at https://wiki.bwhpc.de/e/BwUniCluster2.0/Batch_Queues

17 2024/04/09

Introductory Course: Batch System

NCT INHR

National Hiah-Performance Computina Center

:1’

:1’

=128,

=14,

:1’

bw|HPC

e

R
R
IR

https://wiki.bwhpc.de/e/BwUniCluster2.0/Batch_Queues

1./2. Job submission: hardware of Horeka

570 + 32

2 2 2
76 76 76
256/512 GB 4096 GB 512 GB

960 GB NVMe 7x3.84 TB NVMe 960 GB NVMe
HDR HDR HDR

NVIDIA A40 / A100

19

Partition

dev_cpuonly

cpuonly

dev_accelerated

accelerated

large

2024/04/09

1./2. Job submission:

Default resources

time=10, ntasks=1,
mem-per-cpu=1600MB

time=10, ntasks=152,
mem-per-cpu=1600MB,
mem=243200MB

time=30, ntasks=1
cpu-per-gpu=38, gres=gpu:1

time=30, ntasks=152,
mem=501600MB,
cpu-per-gpu=38, gres=gpu:4

time=10, ntasks=1,
mem-per-cpu=27130MB

Introductory Course: Batch System

partitions of HoreKa

Min. resources

nodes=1,
ntasks=152

nodes=1,
ntasks=152

nodes=1,
ntasks=152,
gres=gpu:1l

nodes=1,
ntasks=152,
gres=gpu:4

nodes=1,
ntasks=1

Max. resources

time=04:00:00, nodes=12,
mem=243200MB,
ntasks-per-node=152

time=3-00:00:00, nodes=192,
mem=501600MB,
ntasks-per-node=152

time=01:00:00, nodes=1,
mem=501600MB,
ntasks-per-node=152, gres=gpu:4

time=2-00:00:00, nodes=128,
mem=501600MB,
ntasks-per-node=152, gres=gpu:4

time=2-00:00:00, nodes=8,
mem=4123930MB,
ntasks-per-node=152

T INHR

National Hiah-Performance Computina Center

bw|HPC

>

4

3R
R
IR

1./2. Job submission: available resources

@ Check available resources via | $ sinfo_t_idle

@ Be careful: a node planned for another job is counted “idle” but will not start a job

xy_abl12340@bwunicluster:~$ sinfo_t_idle

nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes

Partition dev_single
Partition single
Partition dev_multiple
Partition multiple
Partition fat :
Partition dev_multiple_e:
Partition multiple_e
Partition dev_special
Partition special
Partition gpu_4
Partition dev_gpu_4
Partition gpu_8

O, O ON WOBLWO WO O O

xy_ab12340@horeka:~$ sinfo_t_idle

Partition dev_cpuonly 3 1
Partition cpuonly

Partition dev_accelerate : 1
Partition accelerate : 83

Tutorial 1a

@ Goal: use the batch system to execute printenv on the cluster

@ 1. Create afile “submit_script.sh” and set the following options for the batch system

@ 1task #!/bin/bash
@ 500 MB memory #SBATCH [777]

@ Wwall time: 5 minutes #SBATCH --time=[777]
#SBATCH --mem=500

@ 2. Insert the command to be executed at the end of the jobscript
@ 3. Save the jobscript and submit it to the batch system with 22727

$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster

$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka

@ You can use squeue to see the status of the job.

@ 4. Look in the output file of your job (slurm-<jobID>.out) for variables starting with “SLURM_". These
can be used to get information on how the job was started.

“”n

(Errors can occur when copying commands from the pdf, as not all dashes “-” are dashes in the pdf.)

Tutorial 1a - Solution

@ Goal: use the batch system to execute printenv on the cluster
@ 1. Create afile “submit_script.sh” and set the following options for the batch system

® 1task #1/bin/bash
@ 500 MB memory #SBATCH --ntasks=1
#SBATCH --mem=500

@ 2. Insert the command to be executed at the end of the jobscript

@ 3. Save the jobscript and submit it to the batch system with printenv

$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster

$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka

@ You can use squeue to see the status of the job.
@ 4. Look in the output file of your job (slurm-<jobID>.out) for variables starting with “SLURM_". These
can be used to get information on how the job was started.

@ Example: “SLURM_JOB_PARTITION=cpuonly” means: the job was submitted to the partition “cpuonly”.
We specified this on the command line but not on the script.

Tutorial 1b

Goal: learn about option precedence.

1. Modify your script so that instead of executing printenv, the value of “SLURM_NPROCS” is printed
(Hint: use echo)

2. Submit your job again, but this time use sbatch to specify the number of processes:

$ sbatch -p single --reservation=ws -n 4 submit_script.sh # bwunicluster

$ sbatch -p cpuonly --reservation=ws -n 4 submit_script.sh # horeka

3. Check in your output file what the number of processes used is:
@ “1” as specified in the script
B “4” 3s specified on the command line

Tutorial 1b - Solution

@ Goal: learn about option precedence.

@ 1. Modify your script so that instead of executing printenv, the value of “SLURM_NPROCS” is printed
(Hint: use echo)

@ 2. Submit your job again, but this time use sbatch to specify the number of processes:

$ sbatch -p single --reservation=ws -n 4 submit_script.sh # bwunicluster

$ sbatch -p cpuonly --reservation=ws -n 4 submit_script.sh # horeka

@ 3. Check in your output file what the number of processes used is: #!/bin/bash
@ “1” as specified in the script #SBATCH --ntasks=1

@ “4” as specified on the command line #SBATCH --time=00:05:00

. . #SBATCH --mem=500
=> The output file contains:

4 I echo "$SLURM_NPROCS"

=> The options given on the command line take precedence over the options provided in the script.

3. Processing

@ After job submission: job-ID is printed if successful $ sbatch submit_script.sh
Submitted batch job 1487560

& “Monitoring” via:
@ 3.a Simple information on job status

squeue sacct

@ 3.b Extensive details on the job

scontrol show job <job-ID>

@ 3.c Login onto the compute node

srun --jobid=<id> --pty [--overlap] /usr/bin/bash

@ “Modifying” via:
@ 3.d Cancel the job

scancel <job-ID>

3.a Processing - squeue

@ Check status of a job after submission

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487570 dev_cpuon submit_s abl234 R 0:05 1 hkn0301

$ squeue --long
JOBID PARTITION NAME USER STATE TIME TIME _LIMI NODES NODELIST(REASON)
1487570 dev_cpuon submit_s ab1234 RUNNING 2:49 10:00 1 hkn0301

& Job states:
PD = PENDING
R RUNNING $ squeue --start

CD = COMPLETED JOBID ... START_TIME SCHEDNODES
F = FAILED 1487570 ... 2021-10-14T10:10:10 hkn0301

& While job is pending: what is the expected start time?

CA = CANCELLED

3.a Processing - sacct

@ Obtain accounting information of a job

$ sbatch submit_script.sh
Submitted batch job 1487652

$ sacct -j 1487652
JobID JobName Partition Account AllocCPUS State ExitCode

1487652 submit_sc+ dev_single i RUNNING
1487652 .bat+ batch i RUNNING
1487652 .ext+ extern i RUNNING
1487652.0 hostname i COMPLETED
1487652.1 bash i RUNNING

3.b Processing - scontrol show job (1)

@ Obtain detailed information on the job

$ scontrol show job <job-ID>
JobId=1487569 JobName=submit_script.sh

UserId=ab1234(27049) Groupld=scc(1234
Priority=4298 Nice=0 Account=kit QUS=normal
JobState=RUNNING Reason=Prolong Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:19 TimeLimit=00:10:00 Timellin=

SubmitTime=2021-10-13T00:06:58 EligibleTime=2021-10-13...
AccrueTime=2021-10-13T00:06:59

StartTime=2021-10-13T00:06:59 EndTime=2021-10-13T00:16:59 ...
SuspendTime=None SecsPreSuspend=0 LastSchedEval=...

Partition=dev_single /llocliode:Sid=ucono97 QW_
RegNodeList=(null) ExcNodeList=(null)

NodeList=uc2n362
BatchHost=uc2n362

3.b Processing - scontrol show job (2)

@ Obtain detailed information on the job

$ scontrol show job <job-ID>
JobId=1487569 JobName=submit_script.sh

NumNodes=1 NumCPUs=2 NumTasks=1 CPUs/Task=1
mem=2250M

MinMemoryCPU=1126M
OverSubscribe=0K 1
Command= submit_script.sh
WorkDir=/pfs/datab/home/kit/scc/ab1234
StdErr=/pfs/data5/home/kit/scc/ab1234/slurm-1487569.out

StdOut=/pfs/data5/home/kit/scc/ab1234/slurm-1487569.out

3.c Processing - Login onto compute node

@ While the job is running (state = R): login to dedicated compute nodes is possible:

ab1234@hkn1990:~$ sbatch submit_script.sh
Submitted batch job 1487652

ab1234@hkn1990:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487652 dev_cpuon submit_s abl1234 R 2:42 1 hkn0301

ab12340hkn1990:~$ srun --jobid=1487652 --pty [--overlap] /usr/bin/bash
ab1234@nhkn0301: ~$

@ srun adds another step to your job. Once main job finishs, job step is cancelled automatically.

ab1234@hkn0301:~$

slurmstepd: error: ***x STEP 1487652.2 ON hkn0O301 CANCELLED AT 2021-10-13T10:35:52 x*x*x*
exit

srun: Job step aborted: Waiting up to 32 seconds for job step to finish.

ab1234@hkn1990: ~$

3.d Processing - Cancel the job

@ You can cancel your job, e.g. if
@ Submitted wrongly
@ Job does not behave as expected

$ sbatch submit_script.sh
Submitted batch job 1487683

$ scancel 1487683
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487683 dev_cpuon submit_s ab1234 R 2:42 1 hkn0301

@ Check with sacct:

$ sacct -j 1487683
JobID JobName Partition Account AllocCPUS State ExitCode

1487683 submit_sc+ dev_cpuon+ hk-projec+ 2 CANCELLED+
1487683 .bat+ batch hk-projec+ 2 CANCELLED
1487683 .ext+ extern hk-projec+ 2 CANCELLED

Tutorial 2

Goal: practice monitoring and cancelling of jobs.

1. Modify your script such that it executes a command to wait for 600 seconds (sleep 600)
2. Set a walltime of 10 minutes and give a name to your job.

3. Submit your job script with sbatch.

4. Use squeue to check the status.

5. Use scontrol show job to see from which directory you started the job.

6. Use scancel <job-ID> to cancel your job.

Tutorial 2 - Solution

. o . . . #!/bin/bash
Goal: practice monitoring and cancelling of jobs. #SBATCH N 1 -n 1
1. Modify your script such that it executes a command to #SBATCH -t 00:10:00

. #SBATCH —--mem-per-cpu=500
wait for 600 seconds (slee per=cp
(sleep €00) #SBATCH -J myJobName

2. Set a walltime of 10 minutes and give a name to your job.
3. Submit your job script with sbatch. sleep 600

$ sbatch -p single --reservation=ws submit_script.sh # bwunicluster

$ sbatch -p cpuonly --reservation=ws submit_script.sh # horeka

4. Use squeue to check the status.
5. Use scontrol show job to see from which directory you started the job.

$ scontrol show job 1487685 | grep WorkDir
WorkDir=/pfs/datab/home/kit/scc/ab1234/workshop

6. Use scancel <job-ID> to cancel your job.

Interactive jobs

@ Jobs on login nodes are not permitted

@ Sometimes interactive access is required (e.g. for debugging, heavy compilation jobs, etc.)
=> interactive slurm jobs

[Job is waiting to start, Do }
ab12340hkn1990:~$ salloc -p cpuonly -n 1 -t 10 --mem=2000 Not interupt the command
salloc: Granted job allocation 1487738
salloc: Waiting for resource configuration
salloc: Nodes hkn0301 are ready for job Job running. You are

now on a compute node

ab1234@hkn0301:~3 {Now you can work on the compute node}

salloc: Job 1487738 has exceeded its time limit and its allocation has been revoked.

srun: Job step aborted: Waiting up to 32 seconds for job step to finish.

slurmstepd: error: **xx STEP 1487738.interactive ON hkn0301 CANCELLED AT 2021-10-

13T13:02:41 DUE TO TIME LIMIT s**x

exit

srun: error: hkn0301: task 0: Exited with exit code 127 Requested time for the
interactive job ran out

ab1234@hkn1990: ~$

L Back on the login node J

Thank you for your attention.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

