

Towards developing a microphysical retrieval based on beam-aware columnar vertical profiles: Combining side-looking polarimetry with vertical radar measurements

Christian Heske¹, Florian Ewald¹, Silke Groß¹, Gregor Köcher², Tobias Zinner² ¹Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen; ²Meteorologisches Institut, Ludwig-Maximilians-Universität, München

Research Gap What role do ice particle properties play in the partitioning in convective and stratiform regions?

Research Gap What role do ice particle properties play in the partitioning in convective and stratiform regions?

Research Gap What role do ice particle properties play in the partitioning in convective and stratiform regions?

Research Gap What role do ice particle properties play in the partitioning in convective and stratiform regions?

IcePolCKa phase 1: Microphysical retrieval

IcePolCKa phase 1: Microphysical retrieval

IcePolCKa phase 1: Microphysical retrieval

Christian Heske, PrePEP Bonn, 20.03.2025

9

Tetoni et al. 2022

Area of segment: ~58km²

25

Mira-35

28

AMT paper in discussion: https://doi.org/10.5194/egusphere-2025-691 Christian Heske, PrePEP Bonn, 20.03.2025

AMT paper in discussion: https://doi.org/10.5194/egusphere-2025-691 Christian Heske, PrePEP Bonn, 20.03.2025

AMT paper in discussion: https://doi.org/10.5194/egusphere-2025-691 Christian Heske, PrePEP Bonn, 20.03.2025

- BA-CVPs deliver good results and are similar to dedicated measurements
- Finer details are resolvable but melting layer detection capability is limited

AMT paper in discussion: https://doi.org/10.5194/egusphere-2025-691 Christian Heske, PrePEP Bonn, 20.03.2025

- Possibility to extract beam-aware columnar vertical profiles (BA-CVPs) averaged over variable-size segments from operational volume data using the DWD C-band radar network with good results
- Data of multiple operational radars in range of point of interest can be used

Current work and outlook:

- Study of promising radar variable combinations (Zdr-LDR, Zdr-VEL, ...)
- Combination of dataset with simulations from T-Matrix and DDA
- Inclusion of now accessible radar variables (VEL, LDR) into retrieval
- Operational application on a number of past and future cases

Consequences for the German radar network: Ideal locations for additional vertically pointing instruments

- Expected vertical resolution varies and depends on location (a)
- Good coverage between 0 km and 11 km over whole Germany (b)
- Mostly three or more radars can contribute (c)
- Case study location (black dot) good example for average situation in Germany
- High-interest locations with above-average operational coverage for additional instruments (white)

Christian Heske, PrePEP Bonn, 20.03.2025

250123 CPR following BA-CVPs

Zmax = 13000 R_value = 4km Nzs = 131 Z_radius = 400 Every 10th point Of footprint

-30 -> 30

Extracted Profiles: Case study of 28.05.2019

Stratiform and convective precipitation in varying intensity

Towards an advanced microphysical retrieval

36

Towards an advanced microphysical retrieval

Christian Heske, PrePEP Bonn, 20.03.2025

Effects of attenuation: Phidp as marker for high hydrometeor attenuation along radar path

- Comparison between measured phidp and calculated liquid
- hydrometeor attenuation

6

5

N W A Hydrom. attenuation [dB]

1

0

- POLDIRAD and ISN Phidp can be used as marker for high hydrometeor attenuation
- Long distance and less data density lead to noise for MEM
- Combination of spatially separated radars for DWR if Phidp is low

Choice of segment: column in volume of operational data

3D-segment selection in operational volume data of ISN at point of interest (MIRA-35)

Distribution of data points of lowest elevation angle for dedicated radars (line) and operational radars (segment)

Challenges:

- Density of data points decreases with distance (ISN vs. MEM)
- Limited amount of measured elevation angles in operational measurement schemes
- Christian Heske, Frep Gaps between rays that are not spaced beam-width apart

Beam-aware columnar vertical profiles

Columnar vertical profile

- Data in segment is azimuthally averaged
- All data points within column are considered

Beam-aware

- Beam broadening, refraction and earth curvature are considered
- Intersection of individual range gate and height bin is computed
- All range gates intersecting height bin contribute with according weights
- Higher statistical accuracy
- No artificial gaps
- Possibility to include data of several operational radars

Importance of composites: Case study of 28.05.2019

Importance of composites: Case study of 08.07.2021

Christian Heske, PrePEP Bonn, 20.03.2025

Composite of operational radars

