

Studies of Convection-Permitting Ensemble Forecasting for ICON-D2 with a 1km Nest over the Alps

PrePEP Conference | University of Bonn | 18 March 2025

Zahra Parsakhoo Chiara Marsigli, Christoph Gebhardt, Axel Seifert, Jan Keller

GLObal to Regional | ICON Digital Twin

- Global storm-resolving (~3km) regional sub-km scale (500 m)
- Uncertainty estimation with ensembles
- Configurable and on-demand

Test and development of the model perturbation

6

EXPERIMENTs SETUP

Two-way nesting

Horizontal grid resolution	2km (ICON-D2), 1km (*TEAMx)
Upper boundary	22km
Vertical levels	65
LAT-BC	Forecasts (ICON-EU)
Perturbed initial conditions	KENDA (ICON-D2-EPS)
Forecast duration	24h starting on 2022062100
Forecast restart	6h
Ensemble members	20
Microphysics	1mom or 2mom
Turbulence	TURBDIFF
Land	TERRA

Standard operational model perturbations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Parent domain: ICON-D2

Nest domain **1km horizontal resolution**

*TEAMx: <u>https://www.teamx-programme.org/</u>

Testing the impact of convection schemes

緣

zahra.parsakhoo@dwd.de 7

- → Shallow-conv-only experiment forecast is slightly better in generating rain,
- Experiments with 2mom microphysics produce more realistic clouds than 1mom,
- In this case, there is no significant difference in precipitation between 1km and 2km in the south of Germany

→ Motivation of second part: SPP

Static parameter perturbation (Operational at DWD)

- Each uncertain parameter is set to its default or to one of the limits of its perturbation range
- This is done randomly at forecast start for each member independently
- On average each uncertain parameter is perturbed in 50% of the members per forecast run
- The value is kept fix during the run

Stochastically perturbed parameterization (SPP)

- Alternatively, an uncertain parameter is perturbed with a specific temporally evolving stochastic pattern for each member
- Perturbation fields should have both spatial and temporal correlations
- All ensemble members have the same climatology, although their bias can be different from unpertubed forecast
- The value changes stochastically based on certain constraints related to the stochastic patterns properties, i.e., spatial/temporal correlation, variance

Ref: Ollinaho et. al. 2016, Frogner et al. 2021, and Tsiringakis et. al. 2024

Ref: Ollinaho et. al. 2016, Frogner et al. 2021, and Tsiringakis et. al. 2024

SPG in ICON implemented by Axel Seifert and Maleen Hanst Wetter und Klima aus einer Hand

SPG properties:

- Fourier Series vs. Lagandre Polynomial
- Pattern length scale = 50km
- Pattern time scale = 1 hour
- Pattern modes = 50
- Pattern variance = 0.1

Sensitivity tests for SPG variance

The model shows numerical instability with higher values of SPP variance:

- SPP variance = 1.0 : Model crashed
- SPP variance = 0.5 : Model crashed
- SPP variance = < 0.4 : Model ran successfully</p>

Test on a real caseDeterministic forecast

6

Total precipitation | 2022-06-21 | 24h fc 2.00 Test: Coupled SPP with 2mom coupled SPP uncoupled SPP 1.75 microphysics scheme 1.50 1.25 Probability density For perturbing the sedimentation 0.75 velocity of graupel 0.50 -0.25 0.00 24h run 0.010 ICON-LAM: D2 domain 0.005 21st of June 2022 12 Total precipitation [mm]

12°E

12°E

11°E

11°E

10°F

10°E

9°E

8°E

13°E

13°E

30

Test Setup

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

Statistical Analysis

Box-Whisker plot:

- The larger distribution (wider min-max range) observed in CPP indicates a higher level of perturbations.
- The medians across the different experiments are very similar, showing consistency.

Statistical Analysis

Histogram plot:

- For the smallest and largest rain bins, the
 CPP experiment shows higher precipitation, suggesting that more perturbations generate more rain in these extremes
- The differences among the experiments are not statistically significant

Maps of accumulated 24h rain | member 01

rdepths (Maximum allowed shallow convection depth) in convection parameterization

Ref: Ollinaho et. al. 2016, Frogner et al. 2021, and Tsiringakis et. al. 2024

Outlook

- The impact of SPP on the sedimentation velocity of graupel shows reasonable behavior in this first case → No systematic differences observed in precipitation.
- A longer statistical study period is needed to confirm results
- Local analyses based on observation

Next Steps:

- → Implementation of SPP in ICON:
 - → Couple SPP with **physics schemes** for selected parameters
 - → Nest: First test uncoupled at 500 m resolution, then fully coupled with SPP
- → Benchmarking
 - **Tuning SPP in ICON-LAM-D2:** Optimize values for SPP parameters
 - Refining SPP for Higher Resolution: Focus on 1 km resolution for the GLORI Alpine region.

Maps of accumulated 24h rain | member 06

SPP | mem06

2

CPP Tot. Prec. | 2022-06-21 | after 24fc | Ensemble Mean and Spread Contours

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Contour levels: 0.03 , 7.5, 15, 22.6 , 30.1 0.03 < ensemble mean < 30 mm

SPP Tot. Prec. | 2022-06-21 | after 24fc | Ensemble Mean and Spread Contours

DWD

