

The PEAKO-peakTree toolkit:

ANALYZING & INTERPRETING CLOUD RADAR DOPPLER SPECTRUM PEAKS

Teresa Vogl, Martin Radenz, Moritz Lochmann, Heike Kalesse-Los

CLOUD RADAR DOPPLER SPECTRA

METEK 35.5 GHz cloud radar (MIRA-35)

RPG 94 GHz Cloud Radar (LIMRAD94)

Doppler spectrum peak analysis toolkit

PEAKO overview

PEAKO is a supervised radar Doppler spectrum peak finding algorithm. It finds the optimal parameters <u>for detecting</u> <u>peaks</u> in cloud radar Doppler spectra based on user-generated training data.

PEAKO is used to:

3

- create labeled data (peaks marked by a user in cloud radar Doppler spectra), which are used for training and testing the learned function
- train the algorithm using the labeled data to obtain the optimal parameter combination for peak detection
- detect peaks in cloud radar Doppler spectra using the learned function for new data sets

peakTree: Peak structuring with binary trees

4

teresa.vogl@uni-leipzig.de

Represent (sub-)peaks as nodes in a binary tree

application examples

- hydrometeor classification
 → statistics for long data sets
- 2. deriving insect concentrations

peak-based hydrometeor classification

OBSERVED CONTRAST IN CLOUD PHASE

→ Central Europe vs. Southern Chile: stark contrast in ice formation efficiency in thin stratiform clouds likely due to INP availability (Radenz et al., 2021)

 \rightarrow contrasts in riming occurrence in thick cloud systems?

OBSERVED CONTRAST IN RIMING

! preliminary !

DETECTING INSECTS WITH PEAKO/PEAKTREE

- insects have a characteristic signature in Doppler spectra (sharp, narrow peaks)
- for sufficiently narrow peaks, it can be assumed that one peak = one insect (Wood et al., 2009)
 - \rightarrow number of peaks = number of insects

DETECTING INSECTS WITH PEAKO/PEAKTREE

- **PEAKO** for finding peak-finding parameters:

peakTree to analyze individual peaks, e.g. to filter peaks for their spectral width, signal to noise ratio or reflectivity

THANKS FOR YOUR ATTENTION!

PEAKO: peak finding function

1) average neighboring spectra in time and range

2) smooth the averaged spectrum using a smoothing span [m s⁻¹] and a polynomial of a certain degree (Savitzky-Golay smoothing method)

3) find peaks (maxima in the resulting spectrum), using scipy.signal.find_peaks

4) keep only those peaks having a minimum peak width at half-height [m s⁻¹] and above a minimum prominence threshold [dB]

13

Represent (sub-)peaks as nodes in a binary tree

