

UNIVERSITÄT LEIPZIG

Maximilian Maahn, Nina Maherndl, Nils Pfeifer, Sabine Hörnig

Quantifying Riming by Combining the Video In Situ Snowfall Sensor with Cloud Radar Observations

WHY ARE WE INTERESTED IN RIMING?

Adapted from Waitz et al. (2022)

- In mixed-phase clouds, cloud ice and water droplets coexist
- Riming describes how droplets freeze onto ice crystals
- Riming one of most efficient precipitation formation processes
- Difficult to quantify from observations
- Process not sufficiently understood for weather & climate models

Research question: How can we quantify riming from observations?

COMBINED RIMING RETRIEVAL

 Use aggregation and riming model to estimate scattering properties and mass-size relations of rimed aggregates

$$M = \frac{m_{rime}}{m_g} \qquad m_g = \frac{\pi}{6} \rho_{rime} D_{max}^3$$

COMBINED RIMING RETRIEVAL

 Use aggregation and riming model to estimate scattering properties and mass-size relations of rimed aggregates

$$M = \frac{m_{rime}}{m_g} \qquad m_g = \frac{\pi}{6} \rho_{rime} D_{max}^3$$

2. Retrieve normalized rime mass M by combining collocated radar and in situ observations

RIMING IN CLOUDS WITH LOW LIQUID WATER PATHS

Apply retrieval to airborne data from HALO-(AC)³

VIDEO IN SITU SNOWFALL SENSOR (VISSS)

- use two cameras to observe from two angles and constrain observation volume
- combine high resolution images (42 to 59 µm) and large sampling volume (up to 75 x 75 x 61 mm)
- high framerate (150 270 Hz) allows for tracking of particles
- minimize wind disturbance
- open source hardware & software

Why develop your own instrument?

OR

ESTABLISHED IN SITU SENSORS

Few high-quality particle observations

Many low-quality particle observations

VIDEO IN SITU SNOWFALL SENSOR (VISSS)

Many high-quality observations for

- Identifying dominant growth process
 - Aggregation
 - Riming
- Quantifying precipitation properties
 - Particle shape
 - Particle type
 - Particle number concentration
 - Particle fall velocity
- Constraining remote sensing observations

APPLY COMBINED RETRIEVAL TO VISSS DATA

- ARM SAIL campaign in 2022/23 in Colorado
- Almost 10 m snowfall
- Use collocated RPG 94 GHz radar measuring at 40° elevation
- Use 1st generation VISSS

What is the sensitivity of the Z-IWC relation to riming?

SENSITIVITY OF THE REFLECTIVITY (Z) – ICE WATER CONTENT (IWC) RELATION TO RIMING

- IWC from the VISSS & radar
- Z from the radar
- Retrievals of ice water content based on radar reflectivity are inaccurate
- Riming explains large part of Z-IWC (and Z-S) relation variability!

SENSITIVITY OF THE REFLECTIVITY (Z) – ICE WATER CONTENT (IWC) RELATION TO RIMING

How can we measure riming *without* in situ information?

- IWC from the VISSS & radar
- Z from the radar
- Retrievals of ice water content based on radar reflectivity are inaccurate
- Riming explains large part of Z-IWC (and Z-S) relation variability!
- We can derive Z-IWC (and Z-S) relations as a function of riming

QUANTIFY RIMING WITH POLARIMETRIC RADAR

- Understand impact of riming on polarimetric variable based on observations
- Potential for riming retrieval based on polarimetric cloud radar observations?

SUMMARY

Major progress with quantifying riming from in situ and remote sensing observations
Can be used to study riming process
Can improve radarbased IWC (and snowfall rate) retrievals

COMPARISON WITH PIP AND PARSIVEL AT HYYTIÄLÄ

- Good agreement of mass weighted mean diameter
- VISSS (and Parsivel) N₀ larger than PIP N₀, likely due to better sensitivity to small particles (D< 1mm)
- VISSS observes up to 100.000 particles per minute
- For drizzle spectra, excellent agreement with Parsivel for D>0.5 mm

COMPARISON WITH PIP AND PARSIVEL AT HYYTIÄLÄ

- Good agreement of mass weighted mean diameter
- VISSS (and Parsivel) N₀ larger than PIP N₀, likely due to better sensitivity to small particles (D< 1mm)
- VISSS observes easily 10.000 particles per minute

DEPLOYMENTS

MOSAiC, 2019/20

Hyytiälä, FinlandNy-Ålesund,SAIL, Colorado2021/22 & since 2023Svalbard since 20212022/23

Eriswil, Switzerland 2023/24

> 2600 days observations, 1.000.000.000.000 snow particles

UNIVERSITAT LEIPZIG Maximilian.Maahn@uni-leipzig.de **QUANTIFYING RIMING** | Combining In Situ and Riming Observations

Research Example II

STUDYING THE RIMING PROCESS

Sabine Hörnig

Veronika Ettrichrätz

EE 11 cand. mission WIVERN

TR 172 (AC)³

UNIVERSITÄT LEIPZIG