

How important is turbulence for the formation of snow aggregates and rimed particles in Arctic clouds?

Stefan Kneifel (LMU) and Giovanni Chellini (U. Köln)

Data collected at German-French Research Site AWIPEV

Research Project: Arctic Amplification AC³ (www.ac3-tr.de)

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAF UND MEERESFORSCHUNG

94-GHz FMCW
radar24-GHz Micro-
Rain radarMicrowave
radiometerCeilometer35-GHz dual-pol
FMCW radarSince Sep 2017Since Oct 2021

A-MPCs and precipitation

- Liquid droplets at cloud top, maintained by turbulence
- Precipitation is sink for moisture and INP
- Simulations showed: Whether MPC precipitates or not can drastically alter its lifetime and spatio-temporal evolution

Selection criteria

- Cloud-top height < 2500 m
- Liquid and ice coexisting (from Cloudnet target classification)
- Minimum duration 1 hour (with gaps allowed)

- Ratio of linear reflectivity factors or in dB: $DWR_{Ka,W} = Ze_{Ka} Ze_{W}$
- Strongly related to mean particle size \rightarrow Indicator for aggregation

10mm

Video In-Situ Snowflake Imager VISSS (Maahn et al., 2023)

• DWR due to differential attenuation negligible as liquid is mostly on the top and water vapor content is low

Under which conditions do we find aggregation or riming in A-MPCs?

(Chellini et al., JGR, 2022)

Under which conditions do we find aggregation or riming in A-MPCs?

(Chellini et al., JGR, 2022)

Analysis idea: Use A-MPCs to study impact of turbulence on collisional processes

Riming and aggregation are both collisional processes

- Possible effects of turbulence:
 - Clustering, collisions more likely
 - Broader velocity spectrum
 - More collisions, higher impact energy

Events classified based on:

- CTT:
 - → -20 to -10°C \rightarrow aggregation and riming
 - → > -10°C \rightarrow predominantly riming
- Average EDR in uppermost 500 m:
 - → < 10^{-4} m² s⁻³ → low
 - → between 10⁻⁴ and 10⁻³ m² s⁻³ → intermediate
 - → > 10⁻³ m² s⁻³ → high

Higher EDR correlated with:

- Larger, more spherical particles, low velocity \Rightarrow larger aggregates
- Increasing KDP ⇒ higher fragmentation due to higher collision rates?

Impact of turbulence in the riming dominated temperature regime (Chellini & Kneifel, GRL, 2024) 0 d) a) b) f) CTT: >-10°C 100 200 distance from cloud top (m) 300 400 500 600 700 800 $\log_{10}(EDR) < -4$ 900 log₁₀(EDR): -4 to -3 $\log_{10}(EDR) > -3$ 1000 -0.5 0.5 0-1 2 -1 -0.50 0 -0.2 0.2 -30 -20 -10 0 1 0 **MDV** (m s⁻¹) ZDR (dB) DWR (dB) **KDP** (° km⁻¹) Ze (dBZ) Fall velocity Reflectivity Particle size Asimmetry Concentration

Higher EDR correlated with:

Higher MDV but similar DWR ⇒ particles potentially more rimed

Dependency of riming on turbulence and liquid water path (Chellini & Kneifel, GRL, 2024) (LWP)

1) MDV and Ze increase with LWP and EDR

2) increasing LWP alone doesn't increase MDV or Ze in the low EDR class (green)

 \rightarrow turbulence seems to be a necessary ingredient for riming in A-MPCs!

LMU

Conclusions

Further reading: G. Chellini, PhD thesis, available https://kups.ub.uni-koeln.de/72320/

Liquid-layer temperature determines major ice-growth processes

Aggregation:

- At temperatures compatible with dendritic growth
- Increasing EDR linked with increasing collision rates

 \rightarrow larger particles and enhanced secondary ice

Riming:

•

- At temperatures > -10°C
- Turbulence key component to trigger riming

Backup Slides

Study 1:

 Chellini et al. (2022) - Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level -JGR:A

Study 2:

 Chellini et al. (2023) - Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations - ESSD

Study 3:

 Chellini and Kneifel (2024) - Turbulence as a key driver of ice aggregation and riming in Arctic low-level mixedphase clouds, revealed by long-term cloud radar observations - GRL

Sep 2017 - Feb 2021 # cases: 1042

