What can radars tell us about snowfall microphysics? Insights from a MCMC approach

Anne-Claire Billault-Roux^{1,2} and Alexis Berne¹

1 Environmental remote sensing lab, EPFL, Lausanne, Switzerland

2Now at MeteoSwiss, Payerne, Switzerland

1st PrePEP conference, March 2025

EPFL Environmental Remote Sensing Laboratory

The radar Doppler spectrum

Multi-frequency Doppler spectra

-

Rayleigh/non-Rayleigh scattering regimes: more info on PSD

Question: how much microphysical info is contained in these data?

Approach: retrieve posterior distributions using MCMC

- Given a set of triple-freq. Doppler spectra, what is the underlying distribution of microphysical descriptors that can explain the observations (**posterior distribution**)?
 - Uncertainty quantification
 - ✓ Sensitivity tests (e.g., impact of atmospheric broadening, of modelling choices...)
 - ✓ Assess reasonable assumptions for operational retrievals

Approach: retrieve posterior distributions using MCMC

- Given a set of triple-freq. Doppler spectra, what is the underlying distribution of microphysical descriptors that can explain the observations (**posterior distribution**)?
 - Uncertainty quantification
 - ✓ Sensitivity tests (e.g., impact of atmospheric broadening, of modelling choices...)
 - ✓ Assess reasonable assumptions for operational retrievals
- Markov chain Monte Carlo (**MCMC**): Bayesian retrieval framework
 - ✓ Few mathematical assumptions on retrieval problem / error distributions
 - ✓ Retrieval of full posterior distributions
 - X Too slow for use on large datasets

Framework

- MCMC, Metropolis-Hastings: iterative algorithm, based on a chain of accept/reject decisions; leading to sample full posterior distribution.
- Specific choices:
 - Adaptive proposal
 - Parallel tempering needed in some settings
 - Prior: uniform (bounds from literature)

Illustration: Tomic et al. 2019

Framework

- Simulations of radar spectra using PAMTRA (Mech et al, 2020)
 - Frequencies: X + Ka + W bands
 - Scattering: Self-similar Rayleigh-Gans approximation (SSRGA, Hogan and Westbrook 2014)
 - Velocity-size: Heymsfield 2010
- Microphysical descriptors retrieved:
 - PSD shape: Gamma (prescribed through D_{eff} , μ , N_T)
 - Mass-size relation: a_m , b_m (correlated in prior)
 - Area-size relation: α_a , β_a (correlated in prior)
 - Turbulent broadening and radial wind shift: EDR, v_r (ON/OFF)
- Analysis conducted on 10 simulated examples of triple-freq. spectra (representative)

Baseline retrieval: first outcomes

D_{eff} + *b_{mass}* :narrow + 'differentiated' posterior

- N_T : same (but log...)
- μ : wide / 'flat' posterior
 - β : 'non-specific' posterior

Sensitivity to retrieval parameters

- Atmospheric effects (turbulence + radial wind): wider and biased posterior
- Number of **frequencies**: single freq = uncertainty ++; dual-freq = worse if X+Ka only
- Using 'wrong' **SSRG** coefficients: minor impact
- Using 'wrong' mass/size relation: biased posterior
- Using 'wrong' **PSD shape** (μ): wider and biased posterior

Sensitivity tests: mass-size relation

- Knowing true a_m , b_m reduces posterior width
 - e.g., 40% IQR_{0.1-0.9} in $\log(N_T)$
- Assuming wrong a_m , b_m (e.g., Brown and Francis 1995) leads to **biased** posterior
 - e.g., +20% mean in $\log(N_T)$, -100% mean in μ

Sensitivity tests

sometimes auasi-disioint distributions

The case of bimodal Doppler spectra

- Bi-(multi-)modal spectra measured when different hydrometeor populations co-exist in radar volume
- Using MCMC framework: retrieval of 2 ice populations and compare to baseline
- Impact of bimodal "separation" on retrieval quality?

 In some cases, distributions retrieved with similar accuracy than baseline

Sensitivity test

• Peak separation plays a great role in retrieval ability

The case of bimodal Doppler spectra

- Peak separation: quantified with prominence index (mean ratio of peak prominence)
 <-> related with mean JSD
- => shows information content accessible in multi-peaked spectrum

Conclusion

- MCMC framework on examples of simulated multi-frequency radar Doppler spectra
 - ✓ Few mathematical assumptions
 - ✓ Retrieval of full posterior distributions
 - ξ Too slow for operational use

Conclusion

- MCMC framework on examples of simulated multi-frequency radar Doppler spectra
 - \checkmark Few mathematical assumptions
 - \checkmark Retrieval of full posterior distributions
 - x Too slow for operational use

• Insights gained

- ▶ Information content: different level of confidence depending on variable $(D_{eff} \neq \mu)$
- Sensitivity tests: certain common assumptions can be misleading (e.g., a/b, PSD shape)
- Bimodal spectra: prominence index indicates possibility for accurate retrieval

Conclusion

- MCMC framework on examples of simulated multi-frequency radar Doppler spectra
 - \checkmark Few mathematical assumptions
 - \checkmark Retrieval of full posterior distributions
 - x Too slow for operational use

• Insights gained

- ▶ Information content: different level of confidence depending on variable $(D_{eff} \neq \mu)$
- Sensitivity tests: certain common assumptions can be misleading (e.g., a/b, PSD shape)
- Bimodal spectra: prominence index indicates possibility for accurate retrieval
- Perspectives
 - Sheds light on intrinsic uncertainties
 - Using statistical emulators in view of applications on larger datasets

Thank you!

3

Baseline retrieval: bivariate analyses

- Certain correlations come from prior (*a/b*, *α/β*)
- N_T/D_{eff} : expected
- Others to be explored

Sensitivity tests: SSRG example

- Assuming a set of SSRG coefficients different than the true one (i.e., used for original simulation): only minor impact on retrieved posterior
- Depending on SSRG coefs, bias in N_T and b_m

Sensitivity tests: PSD shape

- Knowing true μ reduces posterior width (but not drastically)
- Assuming wrong μ (e.g., exp. PSD) leads to wider and biased posterior
 - e.g., +80% IQR_{0.1-0.9} D_{eff} , -10% mean b_m , on average

Sensitivity tests

• sometimes quasi-disjoint distributions

Sensitivity tests: atmospheric effects

- Turbulent broadening: leads to wider posterior and bias
 - e.g. +30% in IQR_{0.1-0.9} for b_m on average

Sensitivity tests

• But if turbulence is known: no impact on posterior (no intrinsic loss of information in spectra)

Sensitivity tests: atmospheric effects

- Radial wind: leads to wider posterior and bias
 - e.g. +40% in IQR_{0.1-0.9} for $log(N_T)$ on average
- Similar effect if **uniform vertical** wind (same for 3 radars) or radar **misalignment** (differential radial wind)

