Muon g-2 and other low-E observables # General thoughts and three a_{μ} -motivated BSM scenarios Dominik Stöckinger, TU Dresden Workshop Future of Particle Physics, KIT, 1–2 October 2018 ## Why new physics? #### Big questions...point to (TeV scale) new physics EWSB, Higgs, scalar particle? hierarchy $M_{\rm Pl}/M_W$? Naturalness? Dark Matter? Baryon Asymmetry? Supersymmetry? Extended Higgs sector? Extended Flavour sector? Need complementary experiments to discover and scrutinize new physics ## Lines of thought #### Which direction? Oscillate between two strategies - SUSY, Wimps, GUTs, etc: motivation still valid - ► ⇒ keep exploring 'classic' BSM ideas - BUT: maybe naturalness/Wimp-miracle/ gauge coupling unification misleading? - Striking LHC result: vacuum stability: does nature prefer living on the knife-edge (some selection principle)? ▶ ⇒ Might focus on alternative, more minimal new physics [talks by Drewes, van der Bii...1 ## Lines of thought #### There are some experimental hints! - ullet dark matter, strong CP, B-anomalies, $(g-2)_{\mu}$ - ► ⇒ light new particles (<1 GeV)? (unrelated to naturalness etc?) - ► ⇒ or heavy new particles? - need complementary low-E experiments! Might discover light or heavy BSM - g-2 (main focus here) - ▶ EDMs (↔ CPV, baryon asymmetry) - ► LFV (↔ flavor symmetries, neutrino mass generation) - ▶ B-, K-physics, τ -physics (\leftrightarrow flavor) ## Overview on g-2 Now: $$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (28.1 \pm 6.3^{\text{Exp}} \pm 3.6^{\text{Th(KNT17)}}) \times 10^{-10}$$ Soon: $$a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (30?? \pm 1.6^{\rm Exp} \pm 3.4^{\rm Th}??) \times 10^{-10}$$ Electron (recent): $$a_e^{\text{Exp}} - a_e^{\text{SM}} = (-8.8 \pm 3.6) \times 10^{-13}$$ Fermilab + planned J-Parc a_{μ} experiments ## Complementarity: g - 2, EDMs, LFV ## Complementarity: g - 2, EDMs, LFV $\bullet \ \mbox{Mass reach} \ \left\{ \begin{array}{ll} \mbox{EDMs, Flavor (large $\phi_{\rm CP},\theta_{\rm FCNC})$:} &> 1000 \ \mbox{TeV} \\ (g-2)_{\mu} : &< 2 \ \mbox{TeV} \end{array} \right.$ $$a_{\mu}^{\mathsf{BSM}} = \mathcal{O}\left(rac{m_{\mu}^2}{M_{\mathsf{BSM}}^2} ight) imes rac{\delta m_{\mu}^{\mathsf{BSM}}}{m_{\mu}}$$ ~ 1 (radiative muon mass) $\sim lpha$ (1-loop [susy]) $\sim lpha^2$ (2-loop [тном]) ## a_{μ} in the 2-Higgs doublet model? [Cherchiglia,DS,Stöckinger-Kim '17] • 2-Higgs doublet model with light A_0 , large couplings to τ (and top) #### a_{μ} in the 2-Higgs doublet model? [Cherchiglia, DS, Stöckinger-Kim '17] • 2-Higgs doublet model with light A_0 , large couplings to τ (and top) \Rightarrow can explain a_{μ} but testable by many observables: $Z \to \tau \tau$, τ - and b-decays, LHC $gg \to A, H \to \tau \tau$, future ILC? #### a_{μ} in R-symmetric SUSY? • MRSSM: alternative realization of SUSY with: U(1) R-symmetry, N=2 SUSY gauge sectors, Dirac gauginos, protection from FCNC [Kribs, Poppitz, Weiner] successful phenomenology (Higgs, dark matter, LHC bounds, EWPO) [Diessner.Kalinowski, Kotlarski, DSI #### a_{μ} in R-symmetric SUSY? - MRSSM: alternative realization of SUSY with: U(1) R-symmetry, N=2 SUSY gauge sectors, Dirac gauginos, protection from FCNC [Kribs, Poppitz, Weiner] - successful phenomenology (Higgs, dark matter, LHC bounds, EWPO) [Diessner, Kalinowski, Kotlarski, DS] - a_{μ} NOT tan β -enhanced! Small unless m_{SUSY} very small [Kotlarski,Park,DS,Stöckinger-Kim] \Rightarrow testable by LHC/ILC and possibly large effects in $\mu \to e$ conversion (weak correlation!) a_{μ} and radiative muon mass: MSSM for $aneta ightarrow \infty$ Idea: $$v_d=0 \rightsquigarrow m_\mu^{\mathsf{tree}}=y_\mu v_d=0$$ $$\frac{\tilde{H}_{d}^{+}}{\mu_{R}} \qquad \frac{\tilde{W}^{+}}{\tilde{\nu}_{\mu}} \qquad \frac{\tilde{W}^{+}}{\mu_{L}}$$ a_{μ} and radiative muon mass: MSSM for $aneta ightarrow \infty$ Idea: $$v_d = 0 \rightsquigarrow m_{\mu}^{\text{tree}} = y_{\mu}v_d = 0$$ $$a_{\mu}^{\text{SUSY}} = y_{\mu} \times \text{loop}$$ $$m_{\mu}^{\text{pole}} = y_{\mu}v_d + y_{\mu} \times \text{loop}$$ $$\lim_{n \to \infty} \frac{\partial^{\text{SUSY}}_{n}}{\partial u} \xrightarrow{\text{loop}} \frac{\partial u}{\partial \xrightarrow{\text$$ #### New features for $\tan \beta \to \infty$: - $a_{\mu}=$ ratio of loops no loop suppression! $a_{\mu}^{ m SUSY}\sim rac{m_{\mu}^2}{M_{ m SUSY}^2}$ - many details cancel in ratio important: mass ratios (ロ) (団) (量) (量) (量) (型) のQ(O) a_{μ} and radiative muon mass: MSSM for tan $\beta \to \infty$ Idea: $$v_d=0 \leadsto m_{\mu}^{\mathsf{tree}} = y_{\mu}v_d = 0$$ $$a_{\mu}^{\mathsf{SUSY}} = y_{\mu} \times \mathsf{loop}$$ $$m_{\mu}^{\mathsf{pole}} = y_{\mu}v_d + y_{\mu} \times \mathsf{loop}$$ $$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$ $$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$ $$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$ $$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$ $$\mathsf{loop}$$ Results: $$a_{\mu}(ext{equal masses}) pprox -70 imes 10^{-10} \left(1/M_{ ext{SUSY}}[ext{TeV}]\right)^2$$ $a_{\mu}(\mu ext{ or } m_L o \infty) pprox +36 imes 10^{-10} \left(1/M_{ ext{SUSY}}[ext{TeV}]\right)^2$ Can explain a_{μ} even if $M_{LSP} > 1$ TeV, large mass hierarchies needed Experimental tests: B-physics, Higgs-physics/couplings, τ -physics ## Radiative muon/electron mass fits well to a_{μ} and a_{e} ! Take seriously: $$a_{\mu}^{ ext{Exp-SM}} pprox 30 imes 10^{-10} \ a_{e}^{ ext{Exp-SM}} = -8.8(3.6) imes 10^{-13}$$ Radiative m_e , m_μ , $\tan \beta \to \infty$: $$M_{\mathsf{SUSY}} = \ldots = m_{\tilde{e}_R} = 500 \; \mathsf{GeV}$$ $$\Rightarrow a_e = -7 \times 10^{-13}$$ $$m_{\tilde{\mu}_R} = (7...10) \times M_{\mathsf{SUSY}}$$ $\Rightarrow a_{\mu} \sim 30 \times 10^{-10}$ $\tan \beta \to \infty$: perfect fit to a_{μ} and $a_{e}!$ 10/10/12/12/12/12/ #### Conclusions - Should we stop taking seriously naturalness, Wimp-miracle...? - a_{μ} , B-anom., baryon-asymmetry \Rightarrow low-E experiments important - ▶ a_{μ} , LFV, B-/K-physics, τ -physics, EDM, a_{e} - \triangleright a_{ii} : Intriguing hint - sensitive to light or heavy new physics - 2HDM and a_u : light A_0 , large τ , t Yukawas - ▶ LHC, *B*-physics, τ -decays, light A_0 searches! - R-symmetric SUSY MRSSM and a_{tt} - small a_{μ} , interplay $a_{\mu}/\mu \rightarrow e\gamma/\mu \rightarrow e$ - ▶ light sparticles ~→ ILC - Radiative m_{μ} , MSSM tan $\beta \to \infty$ - \triangleright explain a_{ii} for TeV-scale sparticles (even fits a_e) - need very high-E collider, precise Higgs-coupling measurements