Muon g-2 and other low-E observables

General thoughts and three a_{μ} -motivated BSM scenarios

Dominik Stöckinger, TU Dresden

Workshop Future of Particle Physics, KIT, 1–2 October 2018

Why new physics?

Big questions...point to (TeV scale) new physics

EWSB, Higgs, scalar particle? hierarchy $M_{\rm Pl}/M_W$? Naturalness?

Dark Matter? Baryon Asymmetry?

Supersymmetry? Extended Higgs sector? Extended Flavour sector? Need complementary experiments to discover and scrutinize new physics

Lines of thought

Which direction? Oscillate between two strategies

- SUSY, Wimps, GUTs, etc: motivation still valid
 - ► ⇒ keep exploring 'classic' BSM ideas
- BUT: maybe naturalness/Wimp-miracle/ gauge coupling unification misleading?
- Striking LHC result: vacuum stability: does nature prefer living on the knife-edge (some selection principle)?

▶ ⇒ Might focus on alternative, more minimal new physics [talks by Drewes, van der Bii...1

Lines of thought

There are some experimental hints!

- ullet dark matter, strong CP, B-anomalies, $(g-2)_{\mu}$
 - ► ⇒ light new particles (<1 GeV)? (unrelated to naturalness etc?)
 - ► ⇒ or heavy new particles?
- need complementary low-E experiments! Might discover light or heavy BSM
 - g-2 (main focus here)
 - ▶ EDMs (↔ CPV, baryon asymmetry)
 - ► LFV (↔ flavor symmetries, neutrino mass generation)
 - ▶ B-, K-physics, τ -physics (\leftrightarrow flavor)

Overview on g-2

Now:
$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (28.1 \pm 6.3^{\text{Exp}} \pm 3.6^{\text{Th(KNT17)}}) \times 10^{-10}$$

Soon:
$$a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (30?? \pm 1.6^{\rm Exp} \pm 3.4^{\rm Th}??) \times 10^{-10}$$

Electron (recent):
$$a_e^{\text{Exp}} - a_e^{\text{SM}} = (-8.8 \pm 3.6) \times 10^{-13}$$

Fermilab + planned J-Parc a_{μ} experiments

Complementarity: g - 2, EDMs, LFV

Complementarity: g - 2, EDMs, LFV

 $\bullet \ \mbox{Mass reach} \ \left\{ \begin{array}{ll} \mbox{EDMs, Flavor (large $\phi_{\rm CP},\theta_{\rm FCNC})$:} &> 1000 \ \mbox{TeV} \\ (g-2)_{\mu} : &< 2 \ \mbox{TeV} \end{array} \right.$

$$a_{\mu}^{\mathsf{BSM}} = \mathcal{O}\left(rac{m_{\mu}^2}{M_{\mathsf{BSM}}^2}
ight) imes rac{\delta m_{\mu}^{\mathsf{BSM}}}{m_{\mu}}$$

 ~ 1 (radiative muon mass)

 $\sim lpha$ (1-loop [susy])

 $\sim lpha^2$ (2-loop [тном])

a_{μ} in the 2-Higgs doublet model? [Cherchiglia,DS,Stöckinger-Kim '17]

• 2-Higgs doublet model with light A_0 , large couplings to τ (and top)

a_{μ} in the 2-Higgs doublet model?

[Cherchiglia, DS, Stöckinger-Kim '17]

• 2-Higgs doublet model with light A_0 , large couplings to τ (and top)

 \Rightarrow can explain a_{μ} but testable by many observables: $Z \to \tau \tau$, τ - and b-decays, LHC $gg \to A, H \to \tau \tau$, future ILC?

a_{μ} in R-symmetric SUSY?

• MRSSM: alternative realization of SUSY with: U(1) R-symmetry, N=2 SUSY gauge sectors, Dirac gauginos, protection from FCNC [Kribs, Poppitz, Weiner]

successful phenomenology (Higgs, dark matter, LHC bounds, EWPO)
 [Diessner.Kalinowski, Kotlarski, DSI

a_{μ} in R-symmetric SUSY?

- MRSSM: alternative realization of SUSY with: U(1) R-symmetry, N=2 SUSY gauge sectors, Dirac gauginos, protection from FCNC [Kribs, Poppitz, Weiner]
- successful phenomenology (Higgs, dark matter, LHC bounds, EWPO)
 [Diessner, Kalinowski, Kotlarski, DS]
- a_{μ} NOT tan β -enhanced! Small unless m_{SUSY} very small

[Kotlarski,Park,DS,Stöckinger-Kim]

 \Rightarrow testable by LHC/ILC and possibly large effects in $\mu \to e$ conversion (weak correlation!)

 a_{μ} and radiative muon mass: MSSM for $aneta
ightarrow \infty$

Idea:
$$v_d=0 \rightsquigarrow m_\mu^{\mathsf{tree}}=y_\mu v_d=0$$

$$\frac{\tilde{H}_{d}^{+}}{\mu_{R}} \qquad \frac{\tilde{W}^{+}}{\tilde{\nu}_{\mu}} \qquad \frac{\tilde{W}^{+}}{\mu_{L}}$$

 a_{μ} and radiative muon mass: MSSM for $aneta
ightarrow \infty$

Idea:
$$v_d = 0 \rightsquigarrow m_{\mu}^{\text{tree}} = y_{\mu}v_d = 0$$

$$a_{\mu}^{\text{SUSY}} = y_{\mu} \times \text{loop}$$

$$m_{\mu}^{\text{pole}} = y_{\mu}v_d + y_{\mu} \times \text{loop}$$

$$\lim_{n \to \infty} \frac{\partial^{\text{SUSY}}_{n}}{\partial u} \xrightarrow{\text{loop}} \frac{\partial u}{\partial u} \xrightarrow{\text$$

New features for $\tan \beta \to \infty$:

- $a_{\mu}=$ ratio of loops no loop suppression! $a_{\mu}^{
 m SUSY}\sim rac{m_{\mu}^2}{M_{
 m SUSY}^2}$
- many details cancel in ratio important: mass ratios

(ロ) (団) (量) (量) (量) (型) のQ(O)

 a_{μ} and radiative muon mass: MSSM for tan $\beta \to \infty$

Idea:
$$v_d=0 \leadsto m_{\mu}^{\mathsf{tree}} = y_{\mu}v_d = 0$$

$$a_{\mu}^{\mathsf{SUSY}} = y_{\mu} \times \mathsf{loop}$$

$$m_{\mu}^{\mathsf{pole}} = y_{\mu}v_d + y_{\mu} \times \mathsf{loop}$$

$$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$

$$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$

$$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$

$$a_{\mu}^{\mathsf{SUSY}} \to \mathsf{loop}$$

$$\mathsf{loop}$$

Results:

$$a_{\mu}(ext{equal masses}) pprox -70 imes 10^{-10} \left(1/M_{ ext{SUSY}}[ext{TeV}]\right)^2$$

 $a_{\mu}(\mu ext{ or } m_L o \infty) pprox +36 imes 10^{-10} \left(1/M_{ ext{SUSY}}[ext{TeV}]\right)^2$

Can explain a_{μ} even if $M_{LSP} > 1$ TeV, large mass hierarchies needed Experimental tests: B-physics, Higgs-physics/couplings, τ -physics

Radiative muon/electron mass fits well to a_{μ} and a_{e} !

Take seriously:

$$a_{\mu}^{ ext{Exp-SM}} pprox 30 imes 10^{-10} \ a_{e}^{ ext{Exp-SM}} = -8.8(3.6) imes 10^{-13}$$

Radiative m_e , m_μ , $\tan \beta \to \infty$:

$$M_{\mathsf{SUSY}} = \ldots = m_{\tilde{e}_R} = 500 \; \mathsf{GeV}$$

$$\Rightarrow a_e = -7 \times 10^{-13}$$

$$m_{\tilde{\mu}_R} = (7...10) \times M_{\mathsf{SUSY}}$$

 $\Rightarrow a_{\mu} \sim 30 \times 10^{-10}$

 $\tan \beta \to \infty$: perfect fit to a_{μ} and $a_{e}!$

10/10/12/12/12/12/

Conclusions

- Should we stop taking seriously naturalness, Wimp-miracle...?
- a_{μ} , B-anom., baryon-asymmetry \Rightarrow low-E experiments important
 - ▶ a_{μ} , LFV, B-/K-physics, τ -physics, EDM, a_{e}
 - \triangleright a_{ii} : Intriguing hint
 - sensitive to light or heavy new physics
- 2HDM and a_u : light A_0 , large τ , t Yukawas
 - ▶ LHC, *B*-physics, τ -decays, light A_0 searches!

- R-symmetric SUSY MRSSM and a_{tt}
 - small a_{μ} , interplay $a_{\mu}/\mu \rightarrow e\gamma/\mu \rightarrow e$
 - ▶ light sparticles ~→ ILC

- Radiative m_{μ} , MSSM tan $\beta \to \infty$
 - \triangleright explain a_{ii} for TeV-scale sparticles (even fits a_e)
 - need very high-E collider, precise Higgs-coupling measurements