
This course material has been developed at SCC (Steinbuch Centre for

Computing at the Karlsruhe Institute of Technology). If you use it, please

cite that the source is developed at SCC-Institute.

This course material is free: you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software

Foundation. It is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

More details about the GNU General Public License can be seen at:

<http://www.gnu.org/licenses/>.

Tutorial: BwUniCluster 2.0/HoreKa

Large Eddy Simulation (LES) in OpenFOAM

 In this tutorial we will learn how to set up a LES case in OpenFOAM.

1. Inlet boundary condition

In Reynolds-Averaged Navier-Stokes (RANS) simulations, the effects of turbulence are modeled using

turbulence models, which are based on empirical relationships between the mean flow properties and

turbulence quantities. These models assume that the turbulence is statistically steady and homogeneous,

which means that the turbulence structures do not vary significantly in space and time. As a result,

generating turbulent structures at the inlet is not necessary in RANS simulations because the turbulence

models are designed to simulate the averaged effects of turbulence on the mean flow. In Large Eddy

Simulation (LES) or Direct Numerical Simulation (DNS) of fluid flows, it is important to accurately

capture the turbulent structures present in the flow. In order to capture these turbulent structures, it is

necessary to specify appropriate boundary conditions at the inlet of the computational domain. This is

because turbulence is an unsteady and chaotic process, and the statistical properties of the turbulence

vary in both space and time.

Possible approaches for generation of turbulent fluctuations in OpenFOAM:

a) Synthetic Turbulence Generation:

Divergence-Free Synthetic Eddy Method (turbulentDFSEMInlet) is a velocity boundary condition

including synthesised eddies for use with DNS, LES and DES turbulent flows. It can be used as,

inlet
{
 type turbulentDFSEMInlet;
 delta 1; //Characteristic length scale
 U uniform (0 0 1); //mean velocity
 R uniform (0.2 0 0 0.2 0 0.2); // Reynolds stress: <Rxx> <Rxy> <Rxz>
<Ryy> <Ryz> <Rzz>
 L uniform 0.4; //Integral length scale
 nCellPerEddy 1; //Minimum eddy length in units of number of cells
 value uniform (0 0 1);
}

Results:

It is possible to use a field for U, R and L in turbulentDFSEMInlet. To do that first use codedFixedValue

to generate the velocity field in the inlet and write the data just for a time step. Then this generated field

can be pasted in turbulentDFSEMInlet boundary condition. Below is an example of codedFixedValue

boundary condition:

inlet
{
 type codedFixedValue;
 value uniform (0 0 0);

 name increaseToFixedValue;

 code
 #{
 scalar U_max = 2;
 const fvPatch& boundaryPatch = this->patch();
 const vectorField& Cf = boundaryPatch.Cf();
 vectorField& field = *this;

 forAll(boundaryPatch, i)
 {
 scalar r = sqrt(Cf[i].y()*Cf[i].y() + Cf[i].x()*Cf[i].x())/0.5;
 field[i] = vector(0, 0, U_max*Foam::pow(1.0-r, 1.0/7.0));
 }
 #};
}

One of the main problems of the turbulentDFSEMInlet is that it needs additional data for Reynolds

stresses and integral length scale, which is not available in many cases.

b) Recycling-Method (mapped boundary condition):

Extension of domain upstream and extraction of turbulent velocities (and other fields if needed)

from the interior domain as the picture below.

To use this method, the boundary file in the polyMesh directory should be modified in following way:

inlet
{
 type mappedPatch; //modified
 nFaces 245;
 startFace 50225;
 sampleMode nearestCell; //added
 samplePatch none; //added
 sampleRegion region0; //added

 offsetMode uniform; //added
 offset (0 0 5); //added
}

then the boundary condition is set for U and k as bellow,

U:

inlet
{
 type mapped;
 value uniform (1 0 0);
 interpolationScheme cell;
 setAverage true;
 average (1 0 0);
}

k:

 inlet

 {

 type mapped;

 value uniform 0.0;

 interpolationScheme cell;

 setAverage false;

 }

One benefit of using this approach is that it does not require any parameters. However, it is important to

note that the internal field needs to be agitated initially, as otherwise, it may take a significant amount of

time for turbulent structures to form. Therefore, a possible solution is to utilize the turbulentDFSEMInlet

method to generate vortices throughout the pipe (with a rough estimation of R and L) before switching

to the mapped boundary condition (test it).

2. Numerical dissipation in LES

Numerical dissipation in Large Eddy Simulation (LES) refers to the artificial damping of the resolved

turbulent scales due to the discretization of the governing equations on a numerical grid. Numerical

dissipation arises from the truncation error in the numerical scheme used to solve the equations, and can

lead to a loss of accuracy in the resolved scales.

In LES, the resolved turbulent scales are computed on a grid with finite resolution, which means that

small-scale turbulent structures cannot be fully resolved and must be modeled or subgrid-scale (SGS)

resolved. The numerical dissipation in the LES model can cause additional damping of the resolved

scales, which can impact the accuracy of the subgrid-scale models.

In OpenFOAM, there are several discretization schemes available for the solution of the Navier-Stokes

equations, each with different levels of numerical dissipation and accuracy. The choice of discretization

scheme depends on the specific flow problem and the desired level of accuracy. However, central

differencing schemes (Linear) are less diffusive than the upwind schemes, but they can introduce

numerical oscillations in regions with strong gradients.

An example of a suitable discretization for LES is shown below,

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam.com
\\/ M anipulation	
---/

FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object fvSchemes;
}
// * //

ddtSchemes
{
 default backward;
}

gradSchemes
{
 default leastSquares; // ”Gauss linear” is more stable
}

divSchemes
{
 default none;

 div(phi,U) Gauss linear; // use ”LUST” For low quality grids
 div(phi,k) Gauss linear; // use ”imitedLinear” For low quality grids
 div((nuEff*dev2(T(grad(U))))) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear corrected;
}

interpolationSchemes
{
 default linear;
}
// *** //

Let us to examine the effect of discretization in LES. To do that apply the following changes in

fvSchemes of testCase2:

div(phi,U) Gauss linear; → div(phi,U) Gauss linearUpwindV grad(U);

1. Post-processing

The ”fieldAverage” is a utility, that is used to compute time-averaged scalar and vector fields from the

transient data generated by OpenFOAM solvers. It can also compute the root-mean-square (RMS) values

of the fluctuating components of the fields. The time-averaged fields can be used for further analysis,

such as computing turbulence statistics, or for validation against experimental data. To use this utility,

the following code should be added in the cotrolDict,

functions
{
 myFieldAverage
 {
 type fieldAverage;
 libs (fieldFunctionObjects);
 writeControl writeTime;

 fields
 (
 U
 {
 mean on;
 prime2Mean on;
 base time;
 }

 p
 {
 mean on;
 prime2Mean on;
 base time;
 }
);
 }
}

The "probes" utility in OpenFOAM is a diagnostic tool used to extract information about the flow field

at a particular point or location during the simulation. It can be used to monitor the evolution of various

flow parameters such as velocity, pressure, temperature, and turbulence at a given point or a set of points

in the computational domain. To use this utility, the following code should be added in the cotrolDict,

functions
{
 probes
 {
 type probes;
 libs (sampling);

 name probes;

 writeControl timeStep;
 writeInterval 1;

 fields
 (
 U
);

 probeLocations
 (
 (0 0 5)
 (0.025 0 5)
 (0.05 0 5)
 (0.075 0 5)
 (0.1 0 5)
);
 }
}

In OpenFOAM, the "surfaces" utility can be used to perform surface sampling of various flow

parameters such as velocity, pressure, and temperature on a definded surfaces. To perform surface

sampling using the surfaces utility, a user needs to first define the surface(s) of interest using a surface

definition input. This definition specifies the location and geometry of the surface(s) in the

computational domain. To use this utility, the following code should be added in the cotrolDict,

functions
{
 cuttingPlane
 {
 type surfaces;
 libs (sampling);

 writeControl timeStep;
 writeInterval 5;

 surfaceFormat vtk;
 fields (U);

 interpolationScheme cellPoint;

 surfaces
 {
 zNormal
 {
 type cuttingPlane;
 planeType pointAndNormal;
 pointAndNormalDict
 {
 point (0 0 0);
 normal (0 1 0);
 }
 interpolate true;
 }
 }
 }
}

It is possible to utilize a Python script known as "vtkAnim.py" to create an animation of the output files

that have been generated. The “vtkAnim.py” can be downloaded from the following link:

https://openfoamwiki.net/index.php/VtkAnim

