

Image-based Control and Automation of High-speed X-ray Imaging Experiments

Tomáš Faragó

Institute for Photon Science and Synchrotron Radiation (IPS)

www.kit.edu

High-speed Synchrotron Imaging Challenges

- Prior determination of parameters
 - Experimental, e.g. spatio-temporal resolution
 - Data processing, e.g. which algorithms to use
- Experiment control
 - Process localization in space and time
 - Re-adjustment of experimental parameters
- Large amount of data
 - To store: 700 MB/s streaming speed
 - To process: **30 GB/tomogram**

Conventional X-ray Imaging Station

UFO Aim: Image-feedback Driven Station

Syris: Virtual X-ray Imaging Experiments

- Model the whole beam line including motion
- High computational complexity
 - Large 2D images
 - Broad energy spectrum
 - Time (image sequences)
- Approach

Free-space Wave Field Propagation

Propagated wave field: $u(\vec{x}, z_i + \Delta z) = \mathcal{F}^{-1}\{\mathcal{F}[u(\vec{x}, z_i)], \widetilde{K}(\vec{\xi}, \Delta z)\}$

Propagator in Fourier space: $\widetilde{K}(\vec{\xi}, \Delta z) = e^{j\frac{2\pi}{\lambda}\Delta z\sqrt{1-(\lambda\vec{\xi})^2}}$, $\vec{\xi}$ spatial freq.

Propagator Aliasing

Simulation of Complex Shapes

Simulation of a Process

- 5 000 frames/s
 Motion speed
 20 pixels/frame
- syris accounts for:
 - Motion blur
 - Noise
 - Beam flicker

Concert: Image-based Experiment Control

- Connects low-level system components
- Provides
 - High-level experiment description
 - Online 3D reconstruction
 - Decision making
 - Focusing and rotation axis alignment

Enables image-based experiment control and automation

Example Experiment: Automatic Optimization of Acquisition Speed

Projections

- Sample: liquid foam with unknown change rate
- Goal: Analyze 3D structure of the foam in time
- Challenge: High quality 3D reconstruction without motion artefacts
 - Fast data acquisition but with good signal to noise ratio
- How to determine data acquisition speed?
 - Compare slices from consecutive tomograms

Why Slice-based Comparison?

- Projection-based: 1D information per row
- Slice-based: 2D information per row

Metrics: Determination of the Rotation Axis

- Rotation axis must be known for correct 3D reconstruction
- Axis offset and inclination
- Wrong axis: blurred reconstruction
- Detect by statistical metrics

Projection

Wrong axis offset

Wrong axis inclination

Conclusion

New possibilities

- Prior optimization of experimental and data processing parameters
- Online 3D reconstruction with automatic parameter determination
- Image-based experiment control and automation
- Further syris applications
 - Investigation of novel imaging methods
 - Benchmarking of image processing algorithms
- Future Outlook
 - Optimization for full-volume online reconstruction
 - Integration of 3D reconstruction parameter finding into UFO
 - Online Visualization and Analysis