

# Teilchenquellen Charged Particle Sources

Thorsten Kamps (HZB)

kamps@helmholtz-berlin.de

KfB Workshop, 26.04.2018, Karlsruhe

This presentation gives a very broad overview on the topic of charged particle sources relevant for accelerator physics for radiation sources.

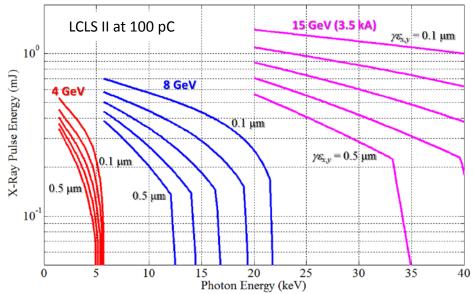
It can only serve as a starting point for a discussion among stakeholders (users, beam physicists, labs, universities, funding agencies) on goals and measures for charged particle sources.

I want to thank (in no particular order) Jochen Teichert, Anke-Susanne Müller, Daniel Krieg, Serena Barbanotti, Peter Spätke, Oliver Boine-Frankenheim, Axel Neumann, Luca Cultrera, John Smedley, Julius Kühn, Tobias Eggert, Maximilian Herbert, Simon Friederich, Fernando Sannibale, Klaus Tinschert, Caterina Cocchi

# Outline

What are the scientific and technical needs for particle sources? What advances are possible and what are the influences? Which directions have the highest potential and thus need a strong push?

# Scientific Needs

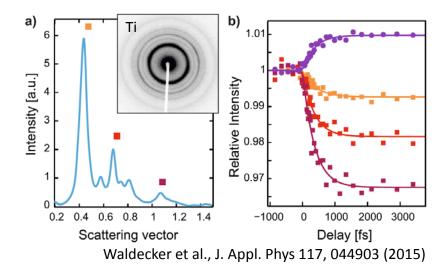

# Scientific Needs - X-rays from Free Electron Lasers (FELs)

- X-rays from **FELs** are required to study atomic structure dynamics, electronic and nuclear coupling in biological and chemical processes, and energy materials in situ.
- Extend scientific capabilities of exisiting and future FEL light sources with **brighter** electron source.
- Higher photon energy and higher peak intensity through **reduced emittance**.
- **CW operation** improves user operation with regards to time structure, higher average brilliance and improved stability.

R. Brinkmann, et al., NIM A 768 (2014) 20-25



HXR ( $\lambda_u$  = 26 mm) with SCRF Linac (red, blue) and Cu-Linac (magenta) and emittance of 0.1, 0.2, 0.3, 0.4, and 0.5 µm




P. Emma, DOE BES Future Electron Sources White Paper, 2016

# Scientific Needs - Electrons for Ultra-Fast Science

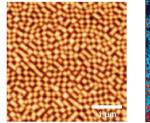
- Explore **ultra-fast structural dynamics** (electronlattice-spin coupling) in a university-scale lab
- Probing matter with electrons ideal for surfaces, thin films and gas samples, complementary to FEL
- The source comes to your lab: Relativistic electron pulses for scattering: Ultra-Fast Diffraction and Microscopy (UED/UEM)
- Fast-growing community in Germany with high demand from user side (MPG-FHI Berlin, MBI, DESY, CFEL, U Duisburg-Essen, TU Dortmund, HZB, JGU Mainz, ...)
- Require electron pulses with ultra-fast pulse length and high transverse coherence (meaning low emittance and small spot at sample).

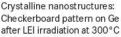


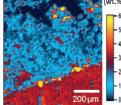


# Scientific Needs – lons for therapy... to ...rocket science

- Pulsed and dc ion sources for broad spectrum of applications from material analysis and modifications to rocket science and medical applications
- For high charge state production Electron
   Cyclotron Resonance Ions Source (ECRIS) is a highly developed method

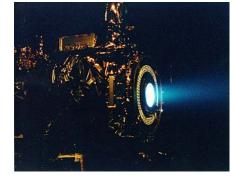

Growing demand for higher intensity, higher brightness and higher stability of ion beams


• Beams from laser based proton sources are promising tools for radiotherapy of cancer.


**Reliability and compactness** 



R. Scrivens, CAS Ion Sources 2012

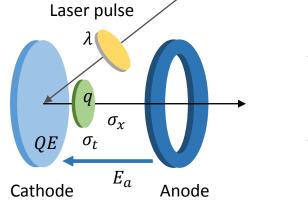


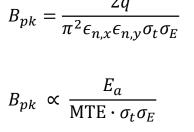




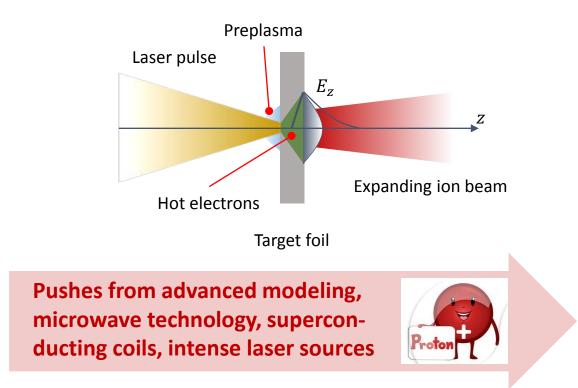

structures: Iron distribution of a sample attern on Ge from an underwater volcano on at 300°C rock obtained by micro-PIXE



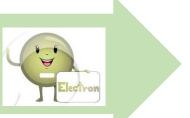




NASA

# How to we get brighter beams?


## How to we get brighter beams?

For photoemission sources: Embed a photocathode with high quantum efficiency in an accelerating gap with high electric field and illuminate it with short laser pulses ...

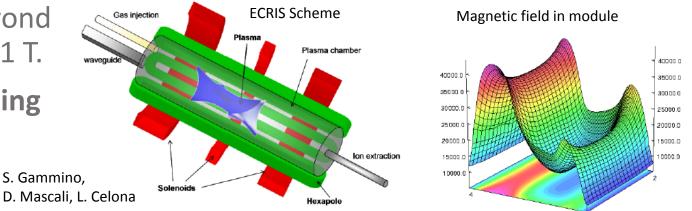


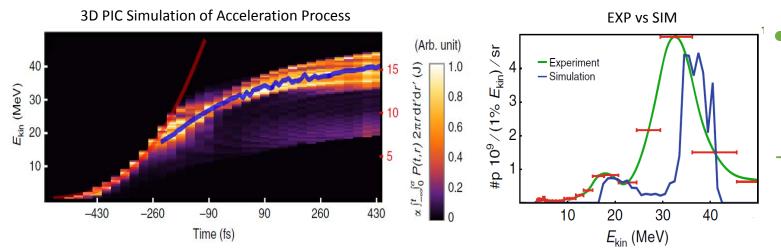



For ECRIS sources: For higher intensities generate stable high plasma density  $\rightarrow$  need higher frequencies and higher magnetic field Explore alternative paths like laser generated ion sources  $\rightarrow$  need intense laser sources



Pushes from photocathode R&D for lower MTE and from SRF and DC gun technology for higher fields





26.04.2018

# Advances

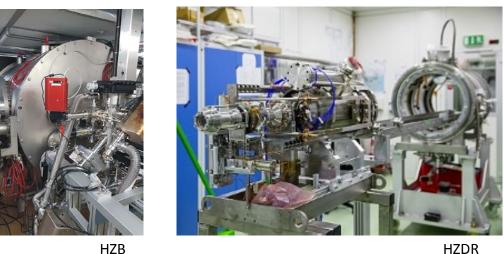
## Advances in ion sources

- ECRIS: Increase operating frequency beyond 28 GHz and peak magnetic field beyong 1 T.
- →Impact of microwave and superconducting tech. Better comprehension of plasma formation and heating is needed.
  S. Gammino,

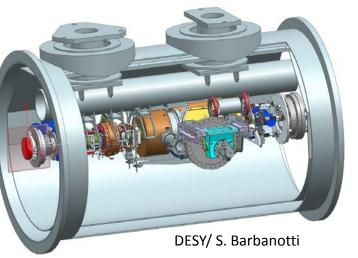




Laser driven ion sources have large potential for ion beam production


→Investigation into laser-plasma interaction and impact of target properties.

P. Hilz, et al., Nature Communications 9 423 (2018)

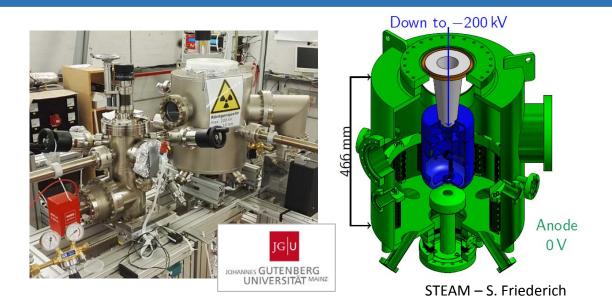

# Pushing SRF Gun Development

- SRF technology has potential for very high accelerating field (30 to 40 MV/m)
- **CW** operation at 100% duty cycle
- Need more experimental setups to **optimize performance** with cavity/cathode interface
- SRF Gun Cluster (DESY, HZB, HZDR)
- → **Transfer best practices** from accelerating XFEL cavities to gun cavities
- $\rightarrow$  Setup of a **modular system kit** (Baukasten) for SRF guns
- → Case study **XFEL CW SRF gun**, benefits also **bERLinPro, ELBE, DALI, LCLS II**





HZB






T. Kamps | Teilchenguellen - Charged Particle Sources | KfB Workshop 26.04.2018 Karlsruhe

# **Innovative DC Guns**

- Well developed solution for gradients up to 10 MV/m.
- Strong DC gun community in Germany (JGU Mainz, TU Darmstadt, U Bonn)
- Offers excellent vacuum conditions for advanced, sensitive photocathode materials.
- →Inverted gun design to push high gradient, high voltage accelerating gap → high brightness beam generation
- →Implement cryocooling to improve vacuum and operational lifetime → benefits generation of high average current, polarized electron beam.



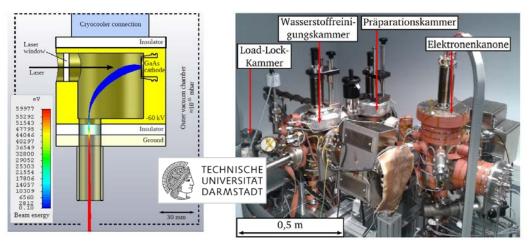
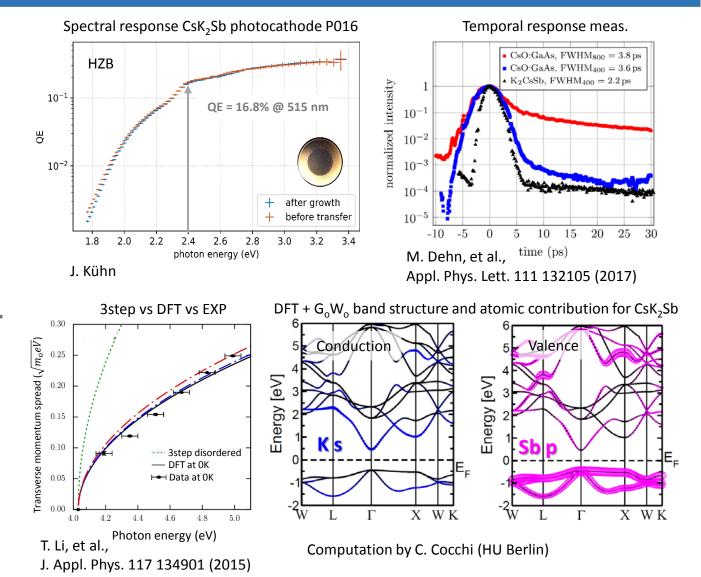




Photo-CATCH – T. Eggert, M. Herbert, M. Espig

# Photocathode R&D – Material Science for Accelerators

- Use full arsenal of **material science** methods for preparation, analysis and computational modeling.
- →Implement temperature control for operation in harsh injector environment and to reduce MTE.
- →Systems with long range order to avoid physical and chemical surface roughness.
- → Plasmonic and nanostructured emitters to reduce mean transverse energy (MTE).
- →Advanced model for intrinsic emittance and QE (photocathode material library)



### Summary

#### Superconducting Tech

SRF Magnets

#### Material Science

Theory Preparation Analytics of Materials

Advanced Computing Modeling Optimization Operation

Beam/Plasma /Laser Physics

Dynamics

Manipulation

#### Charged particle sources

Continuous wave High gradient SRF/NCRF/DC accelerating gap

> Planar and Structured Emission Sources

Compact and

Reliable

Ion Sources

Ion Sources for Therapy Ultra-fast Electron Díffractíon and Mícroscopy

Coherent THz Inverse Compton Sources Sources

Free Electron Laser

26.04.2018

T. Kamps | Teilchenquellen - Charged Particle Sources | KfB Workshop 26.04.2018 Karlsruhe