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H.E.s(.j% Status on Tasks -z,

@ Classification (y : Background) on Monte Carlos: Acc 96.1%
@ Classification (y : Background) on Data: better then best H.E.S.S.-Analysis

@ Classification (y : H: He : C: Si: Fe) on Monte Carlos: Acc ~60%
@ Classification (y : H: He : C: Si: Fe) on Data: w.i.p.

@ Regression: Direction Reconstruction ,workes"
PSF (R, @ 1 TeV) ~ 0.065° (MC), 0.102° (data)

for comparison: Hillas ~ 0.100°, ImPACT ~ 0.050°

@ Regression: Fe-Energy-Spectrum: Masters Thesis C. Hillig w.i.p.



So, as M. Erdmann mentioned: we had a paper

(For those who didn’t find the time to read it, here are the main results)

* https://authors.elsevier.com/c/1Xy1J3Ix5tdddw
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Paper results (Classification on MC)

ROC ¢ distribution (preselect benchmark Acc. = 96.14%)
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(b) CRNN (-score distribution for simulated signal and
background events.

Figure 3: ROC curves for the CRNN classifier and the H.E.S.S. BDT classifier (left) and the (-score distribution for the
CRNN classifier, obtained on the benchmark data-set with pre-selection cuts.
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Paper results (Direction on MC vs Hillas and ImPACT)
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Figure 4: Angular resolution vs. true simulated energy at
20° zenith angle. The results of two CNN regressors are
shown in comparison to the Hillas-based and ImPACT
PSFs. The dotted curve refers to a regressor trained
without applying pre-selection cuts to the training data,
while the "X’-decorated curve refers to a regressor trained
on pre-selected events. All reconstructions are carried out
on the same pre-selected benchmark set.
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Paper results (Direction on data vs Hillas and ImPACT)
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Figure 5: The squared angular distance 02 distribution for
excess events from one flare observation of PKS 2155-304,
using the Hillas, InPACT and CNN direction

reconstruction methods.

Figure 6: A two dimensional distribution of excess events
observed in the direction of PKS 2155-304 for the one flare
observation, using the CRNN classifier and CNN regressor.
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@ Classification works excellent on MC
@ Classification works quite good on data (still better than TMVA)

@ Regression works ,,okay-ish“ on MC
@ Regression nothing to be prouf of on data
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Open Question:

Why is the Monte Carlo performance so far from data performance?
And worse: not always correlated!

Example:
Classifyer 1 with architecture xy performs excellent on MCs

Classifyer 2 with architecture z performs well, but worse than 1 on the
very same MC training-/validation- and test-sets

But on data:
2 is clearly better than 1 for no obvious reason...

(we just stumbled across it by chance)
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This is a serious issue:

In order to calculate fluxes, one relies on MC based effective areas, which
are affected by all three analysis tasks.

For example, the cut efficiency of the classifier in use directly affects the
number of surviving signal events. Since a DL-based classifier acts
differently on simulation versus observation data, the effective areas are
not reliable when applied to observation events and the derived fluxes
could be biased.



What we wanted to do:

@ Investigate data-MC discrepancy and learn from it
or even

@ Circumvent the discrepancy without knowing the reason
after that:

@ Start working on hybrid analysis

@ Start working on energy reconstruction

@ Since Classification works best: try separating higher nuclei

@® And of course: keep improving the full analysis chain
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Investigation of MC-data discrepancy

@® We trained a RNN Classifyer on:
— 256k MC protons (Class label 0)
VS.
— 256k events from a PKS-2155 real data run (Class label 1)

(yes ok, there are ~60 y on-events in it, but who cares. It's basically only real protons)
® We tested that very Classifyer on:
— MC protons vs. real protons (the validation for the training)
- MC gamma vs. real protons

- MC gamma vs. MC protons
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Investigation of MC-data discrepancy
@ Test on MC protons vs. real protons (the validation for the training)
remember: training: MCP — realP testing: MCP — realP
Accuracy (how many correct classifications were made) 99.34%

Precision (how many Class 0 events are amongst the events classified as 0) 99.22%
Recall (how many Class 0 events were classified correctly) 99.46%

Specificity (how many Class 1 events were classified correctly) 99.22%



Ok.
So the proton simulations aren’t perfect...
We all knew that, right?!

But there is more...
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Investigation of MC-data discrepancy

@® Test on MC gammas vs. real protons
remember: training: MCP — realP testing: MCy — realP

Accuracy (how many correct classifications were made) 99.48%
Precision (how many Class 0 events are amongst the events classified as 0) 99.23%
Recall (how many Class 0 events were classified correctly) 99.74%

Specificity (how many Class 1 events were classified correctly) 99.22%
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Investigation of MC-data discrepancy
@® Test on MC gammas vs. real protons
remember: training: MCP — realP testing: MCy — realP
Accuracy (how many correct classifications were made) 99.48%

Precision (how many Class 0 events are amongst the events classified as 0) 99.23%

Recall (how many Class 0 events were classified correctly) 99.74%

Specificity (how many Class 1 events were classified correctly) 99.22%
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Investigation of MC-data discrepancy
@® Test on MC gammas vs. real protons
remember: training: MCP — realP testing: MCy — realP
99.48%
99.23%
Recall (how many Class 0 events were classified correctly) 99.74%

Specificity (how many Class 1 events were classified correctly) 99.22%
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Investigation of MC-data discrepancy
@® Test on MC gammas vs. MC protons
remember: training: MCP — realP testing: MCy — MCP
Accuracy (how many correct classifications were made) 50.11%

Precision (how many Class 0 events are amongst the events classified as 0) 50.06%
Recall (how many Class 0 events were classified correctly) 99.74%

Specificity (how many Class 1 events were classified correctly) 0.48%
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Everything is
Simulation,
Nothing data

Investigation of MC-data discrepancy

@® Test on MC gammas vs. MC protons
remember: training: MCP — realP testing: MCy — MCP

Accuracy (how many correct classifications were made) 50.11%
Precision (how many Class 0 events are amongst the events classified as 0) ¥%0.06%
Recall (how many Class 0 events were classified correctly) 99.74%

Specificity (how many Class 1 events were classified correctly) 0.48%
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Investigation of MC-data discrepancy
@® Work in Progress: Layerwise Relevance Propagation (LRP¥)

Big Data Science in Astroparticle Research, 18-20 February 2019 - Matthias Blchele
* httos://www.itu int/en/iournal/001/Paaes/0O5 aspbx
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Investigation of MC-data discrepancy
@® Work in Progress: Layerwise Relevance Propagation (LRP¥)

@ These are all protons, but can you tell what is simulated and data?

Big Data Science in Astroparticle Research, 18-20 February 2019 - Matthias Blchele 26
* httos://www.itu int/en/iournal/001/Paaes/0O5 aspbx
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Investigation of MC-data discrepancy
@® Work in Progress: Layerwise Relevance Propagation (LRP¥)

@ These are all protons, but can you tell what is simulated and data?
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@® Using Auto-Encoder:

— Results so far: okay-ish.
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Conclusions

@ Task Group made (good) progress
@® 1 Paper accepted, 1 more in pipeline
@® Deep Learning Techniques can improve performace (Classification)

@® MC - data discrepancy is the showstopper for further, deeper
improvement of direction/energy at the moment

Outlook

@ Solve the issues
@® Do hybrid, energy, truncated events and heavy nuclei

@ Accept the extraordinary capability of the standard analysis and help
to improve it by only looking at events that do not pass regular cuts
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NOT MY WORK, but still worth being mentioned :)

. e . Confusion Matrix
@ Classification of

heavy nuclei:

(Christina)

Predicted label
Silicon Carbon Helium Proton Gamma

Iron

Gamma Proton Helium Carbon Silicon Iron
True label
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NOT MY WORK, but still worth being mentioned :)

@® Reconstruction . Energy bias
heavy nuclei: i
4 i |
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NOT MY WORK, but still worth being mentioned :)
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Conclusions (again)

@® Deep Learning is a interesing ,tool” for analyzing IACT data
@ But: Sophisticated ,standard” analysis chains are hard to outperform

— Don't try to beat them on on their home-base, but rather focus on
regimes where standard analysis has no chance at all

(truncated images, cosmic rays)



Thanks a lot.

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG
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