

Bundesministerium für Bildung und Forschung

Big Data Science in Astroparticle Research - Workshop

Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network

Martin Erdmann, Jonas Glombitza, Thorben Quast*

19.02.2019

Calorimeter simulation nowadays

• Computationally expensive: simulation of particles interacting with material.

Geant 4

electromagnetic & hadronic physics, lists with increasing/decreasing accuracy.

2

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019

Near future: Simulation with generative models ?

• Computationally expensive: simulation of particles interacting with material.

Geant 4

- electromagnetic & hadronic physics, lists with increasing/decreasing accuracy.
- Grand goal: replace simulation steps by *ultra fast, accurate* generative methods.

Step 1: Focus on simulation of particles showers in calorimeters.

Proof-of-principle already demonstrated:

 arXiv:1701.05927v2, arXiv:1705.02355v2, arXiv:1711.08813v1, S. Vallecorsa @ ACAT2017, arXiv:1802.03325v1, ...

3

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Goal formulation

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019

4

III. Physikalisches Institut

Goal formulation

Thorben Quast quast@physik.rwth-aachen.de

19 February 2019

_

5

Assumed calorimeter: HGCAL prototype (2017)

HGCAL = Sampling calorimeter

- 7 sensitive silicon layers.
- Hexagonal pixels with ~1cm in diameter, 128 per layer.

Exemplary Geant4 shower images

1 shower image: 12 x 15 x 7 tensor, intensity <-> energy

7

Sample:

20, 32, 50, 80 & 90 GeV electrons, O(100k) showers each. Additional 70 GeV electron sample not used in the training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019

Goal formulation

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019

_

9 8

Concept of Generative Adversarial Neural Networks

9

Ian J. Goodfellow's (2014)

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019

III. Physikalisches Institut

Concept of Generative Adversarial Neural Networks

Training strategy using WGANs

Generator network (WGAN) maps (noise, labels) to generated showers.

Critic network (C) estimates the Earth Mover distance btw. generated & real showers.

Figures of merit for training:

Critic loss:

 $c_{loss} = -C(showers_{Geant4}, labels_{Geant4}) + C(showers_{gen}, labels_{gen}) + \lambda \times gradient penalty,$

Generator loss w.r.t. critic:

 $\lambda := 5$

Thorben Quast guast@physik.rwth-aachen.de

19 February 2019 11

• 2 constrainer networks for energy- (E) and position regression (P) on shower images.

Energy regression network E

Position regression network P

E and P trained using Geant 4 showers - no bias from generated showers.

 $\frac{\text{Energy and position regression losses:}}{e_{\text{loss, Geant4}} = (E(\text{showers}_{\text{Geant4}}) - E_{\text{Geant4}})^2, \text{ } p_{\text{loss, Geant4}} = (P(\text{showers}_{\text{Geant4}}) - p_{\text{OS.Geant4}})^2$

• Generator is additionally trained to minimise the regression errors.

Total generator loss combines generator related losses.

gloss, tot = **g**loss, c + K_e X |**e**loss, Geant4 - **e**loss, gen| + K_p X | **p**loss, Geant4 - **p**loss, gen |, $\kappa_e := \kappa_p := 0.01$

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

System of networks trained for one day

Generated electron showers look reasonable

Side note:

Reasonable shower images are already obtained after a few training epochs.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

WGAN has learnt: Pixel occupancy

note: masking of regions outside the acceptance in the WGAN

✓Radial development.x WGAN: Overall scale slightly underestimated.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Generated events: Dependence on labels

If WGAN has learnt to respect labels:

Reconstructed quantities of generated showers correlate with true label.

Note: 70GeV sample not used in training.

✓ incident energy

Distributions of 1D observables: Good

Note: 70GeV sample not used in training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Distributions of 1D observables: Good

Note: 70GeV sample not used in training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Correlation between layers: Good

<-->

sum in previous layer.

Note: **70GeV sample** not used in training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Correlation of depth and signal sum: Good

 Specific sampling configuration:

shower depth
 <->
 summed signal

III. Physikalische

Note: **70GeV sample** not used in training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

• p_E<10MIPs/pixel: Only ~10% contribution to the total shower signal.</p>

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

O(x1000) faster calorimeter simulations possible

• Typical 20-90GeV e- shower generated within 0.5-2 seconds using Geant 4.

Different hardware setups, fixed generator network architectures

Method	Computing Setup	20 GeV e-	Speed-up	90 GeV e [.]	Speed-up	
Geant 4	any	O(500ms)	-	O(2000ms)	-	Slow
WGAN	Intel® Xeon® CPU E5-1620	52 ms	x10	52 ms	x40	
WGAN	NVIDIA® Quadro® K2000	3.6 ms	x140	3.6 ms	x560	
WGAN	NVIDIA® GTX™ 1080	0.3 ms	x1660	0.3 ms	x6660	Fast

WGAN evaluation: **No energy dependence**.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Summary: Calorimeter WGAN

 Generative models: promising fast simulation tools for particles' passage through matter.

This study:

•Wasserstein GAN concept instead of traditional GANs.

Conditioning impact position & incident energy shower generating electrons.
 (CMS HGCal prototype as real-life calorimeter assumed.)

Key observations:

➡Many reconstructed quantities & key correlations of generated showers

appear in many aspects surprisingly close to Geant 4 simulation.

→Discrepancy for low energy densities.

➡Here: Inference step O(1000)x faster than Geant 4.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Preprint on arXiv

Additional material

Wasserstein GANs

Concept of Wasserstein loss (Arjovsky et al. 2017) is used.

$$W(\mathbb{P}_{r}, \mathbb{P}_{g}) = \inf_{\gamma \in \Pi(\mathbb{P}_{r}, \mathbb{P}_{g})} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right] \longleftrightarrow W(\mathbb{P}_{r}, \mathbb{P}_{\theta}) = \sup_{\|f\|_{L} \leq 1} \mathbb{E}_{x \sim \mathbb{P}_{r}}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)] \right]$$

Mathematically
motivated approach.
Relevant for the
application is this.

$$L = \underbrace{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \underbrace{\mathbb{E}}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right] + \lambda \underbrace{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right].$$
Original critic loss
Our gradient penalty

Critic D(x) instead of a discriminator network.

➡ L is a direct measure for the convergence of the training.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Generator network with ~672k free parameters

Critic network with ~477k free parameters

Logarithmic intensity: energy' = log(1+energy)

• ...less smoothly.

• ...all others, too.

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

III. Physikalische

19 February 2019 28

1/N dN/dX [a.u.]

Supplementary benchmark: 10 MIP pixel cut at evaluation

Supplementary benchmark: Nhits

10 MIP cut per pixel

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Supplementary benchmark: Nhits

10 MIP cut per pixel

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Supplementary benchmark: Observables

10 MIP cut per pixel

Supplementary benchmark: Correlations

10 MIP cut per pixel

III. Physikalisches

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

Do dead areas need to be masked?

Comparison: Costs

Comparison: Occupancy

90 GeV e- Geant4

WGAN: no masking of dead cells

VS.

WGAN: with masking of dead cells

Thorben Quast <u>quast@physik.rwth-aachen.de</u>

19 February 2019 36

III. Physikalisches Institut

Comparison: Label dependence

no masking of dead cells

VS.

WGAN. 20 GeV e

WGAN, 32 GeV e

WGAN, 50 GeV e

VGAN, 70 GeV e

WGAN. 80 GeV e

WGAN 90 GeV e

20

10

0

with masking of dead cells

Comparison: Observables

Comparison: Correlations

