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The 21st Century

Various technological advances in the 21st century are only possible through
integrated mathematical modeling, simulation, and optimization.

Further Examples:

Turbines
 Adjoint based jet-noise minimization

Atomistic molecular dynamics
 Simulations with ultralong timescales

Star formation
 Understanding of turbulent accretion of matter

There is a pressing need to go beyond
pure modeling, simulation, and optimization approaches!
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Data-Based Approaches

Diverse Machine Learning Approaches:

Principal components analysis

Support vector machines

Deep neural networks

...

Health Care

SurveillanceSelf-Driving Cars

Legal Issues

Very few theoretical results explaining their success!
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Bridging both Worlds

Data Science
Modeling,

Simulation,
Optimization

Current Situation:

Data Science
I Novel powerful, pure data-based methodologies
I Deep theoretical understanding often missing

Modeling, Simulation, Optimization
I Traditional (differential-equation based) methodologies very well

understood
I Complexity of current physical or engineering systems too massive

Gitta Kutyniok (TU Berlin) Deep Learning and Mathematical Modeling HAP-Workshop 2019 4 / 37



From Data-Driven to Model-Based Approaches

Problems, Viewpoints and Solution Strategies:

Pure data-driven approaches.
Detect structural components in data sets!

Machine learning with physical constraints.
Insert physical information in machine learning algorithm!

Parametric differential equations.
Learn parameters from given data sets!

Data assimilation.
Combine sparse data with physical model to generate a general model!

Data analysis on simulation data.
Study simulation generated data in search of underlying laws!

Data Science
Modeling,

Simulation,
Optimization

Optimal balancing of
data-adaptiveness and differential equation-based modeling!
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Delving Deeper into Deep Neural Networks
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Neural Networks from a Mathematical Perspective

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

σ : R→ R: (Non-linear) function called rectifier.

W` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps (x 7→ Ax + b)

Then Φ : Rd → RNL given by

Φ(x) = WLσ(WL−1σ(. . . σ(W1(x))), x ∈ Rd ,

is called a (deep) neural network (DNN). A DNN with only few non-zero
weights is called sparsely connected.
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Looking closer...

Remark: The affine linear map W` is defined by a matrix A` ∈ RN`−1×N`

and an affine part b` ∈ RN` via

W`(x) = A`x + b`.
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))mi=1 of a function
such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and σ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (W`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
A`,b`

m∑
i=1

L(ΦA`,b`(xi ), f (xi )) + λR(A`, b`)

yielding the network ΦA`,b` : Rd → RNL ,

ΦA`,b`(x) = WLσ(WL−1σ(. . . σ(W1(x))).

This is often done by stochastic gradient descent.

Goal: Φ ≈ f
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Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 Networks with hundreds of layers can be trained.
 Deep Neural Networks!

Age of Data starts.
 Vast amounts of training data is available.

Current Situation:

Setting up a deep neural network for a particular application is more or
less trail-and-error and based on experience.

Training a deep neural network is very unpredictable.

Almost no knowledge about why a deep neural network mades a
decision.
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Danger of Deep Neural Networks?

AI researchers allege that machine learning is alchemy:

“Ali Rahimi, a researcher in artificial intelligence (AI) at Google

in San Francisco, California, took a swipe at his field last

December and received a 40-second ovation for it. Speaking at

an AI conference, Rahimi charged that machine learning algori-

thms, in which computers learn through trial and error, have become a form of “alchemy”.

Researchers, he said, do not know why some algorithms work and others don’t, nor do

they have rigorous criteria for choosing one AI architecture over another....”

“For example, he says, they adopt pet methods to tune their AIs’ ”learning rates”how

much an algorithm corrects itself after each mistake –without understanding why one is

better than others. In other cases, AI researchers training their algorithms are simply

stumbling in the dark. For example, they implement what’s called “stochastic gradient

descent” in order to optimize an algorithm’s parameters for the lowest possible failure

rate. Yet despite thousands of academic papers on the subject, and countless ways of

applying the method, the process still relies on trial and error....”

Science (May 2018)
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, ...
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A Glimpse into the Theory
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Expressivity: Universality

Universal Approximation Theorem (Cybenko/Hornik/Pinkus, 1989–1999):
Let σ : R→ R be continuous, but not a polynomial. Also, fix d ≥ 1, L = 2,
NL ≥ 1, and a compact set K ⊆ Rd . Then, for any continuous
f : Rd → RNL and every ε > 0, there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd

such that

sup
x∈K
|

N∑
k=1

akσ(〈wk , x〉)− f (x)| ≤ ε.

Every continuous function can be approximated up to ε > 0 by a

neural network with one hidden layer and O(N) neurons.

Additional approximation results aiming to understand the impact of...

the activation function,

the chosen function class,

the depth of the neural network,

...
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Solving Inverse Problems

Examples:

Denoising.

Feature Extraction.

Inpainting.

Magnetic Resonance Tomography.

...

Sparse Regularization (Compressed Sensing):
Given an ill-posed inverse problem Kx = y , where K : X → Y and x is
known to be sparsely representable by an ONB/frame (ση)η, an
approximate solution xα ∈ X , α > 0, can be determined by

min
x̃
‖Kx̃ − y‖2 + α‖(〈x̃ , ση〉)η‖1.
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Shearlets

Shearlets (Kutyniok, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).
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Shearlets are Optimal

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal approximation rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

Matlab (Kutyniok, Lim, Reisenhofer; 2013)

Julia (Loarca; 2017)

Python (Look; 2018)

Tensorflow (Loarca; 2019)
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Optimally Sparsely Connected Neural Networks

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2017): Let ρ be an
admissible smooth activation function, and let ε > 0. Then there exist
Cε > 0 such that, for all cartoon-like functions f and N ∈ N, we can
construct a neural network Φ with O(N) connections (This is minimal!)
and 3 layers satisfying

‖f − Φ‖L2(R2) ≤ CεN
−1−ε.

Remark: The topology and quantized weights of this network can be stored
with C · N · polylog(N) bits.

Function classes which are optimal representable by affine systems

are also optimally effectively approximated

by memory-efficient neural networks with a parallel architecture!
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Explainability

Main Questions:
Given a trained deep neural network.

Which input features contribute most to the decision?

How can the outcome be explained?

Theorem (Wäldchen, Macdonald, Hauch, Kutyniok; 2019):
“The (optimization) task of determining the most relevant input signal
components for a Boolean classifier decision for binary signals is
NNPP -complete and NP-hard to approximate.”

 Solution strategy of a relaxed optimization problem based on assumed
density filtering (Wäldchen, Macdonald, Hauch, Kutyniok; 2019)!
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Numerical Results, I (Wäldchen, Macdonald, Hauch,
Kutyniok; 2019)
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Numerical Results, II (Wäldchen, Macdonald, Hauch,
Kutyniok; 2019)
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Taking the Best out of Both Worlds
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From Data-Driven to Model-Based Approaches

Problems, Viewpoints and Solution Strategies:

Pure data-driven approaches.
Detect structural components in data sets!

Machine learning with physical constraints.
Insert physical information in machine learning algorithm!

Parametric differential equations.
Learn parameters from given data sets!

Data assimilation.
Combine sparse data with physical model to generate a general model!

Data analysis on simulation data.
Study simulation generated data in search of underlying laws!

Data Science
Modeling,

Simulation,
Optimization

Model based & data driven approaches:
Only learn what needs to be learned!
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Computed Tomography (CT)

Computed Tomography (CT):

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
,

φ ∈ [−π/2, π/2), and s ∈ R.

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

Limited-Angle Computed Tomography:

Challenging inverse problem if Rf (·, s) is only
sampled on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, breast tomosynthesis,
electron tomography,...
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Model-Based Approaches Fail

Sparse Regularization with Shearlets (ψj ,k,m)j ,k,m:

argminf

[
‖Rf − g‖2 + α · ‖(〈f , ψj ,k,m〉)j ,k,m‖1

]
.

Clinical Data (60◦ missing wedge):

Original Image

Filtered BackprojectionSparse Regularization with Shearlets
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Deep Learning for Inverse Problems

Incomplete List:
On FBP:

I [Kang et al., 2017]: contourlets of FBP + U-net, 2nd place Mayo low-dose challenge &

many more works from this group!

I [Zhang et al., 2016]: 2-layer network on FBP

I [Jin et al., 2017]: U-Net on FBP

Incorporating forward model via optimization scheme:

I [Hammernik et al., 2017]: learning weights for FBP, then filtering with gradient steps

I [Meinhardt et al., 2017]: learning proximal operators

I [Adler et al., 2017]: learned primal dual

Deep Learning Approach for Limited-Angle CT [Gu & Ye, 2017]
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Zooming in on the Recovery Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Some Observations:

Only certain boundaries/features seem to be “visible”!

Missing wedge creates artifacts!

Highly ill-posed inverse problem!
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Visibility in CT

Theorem ([Quinto, 1993]): Let L0 = L(φ0, s0) be a
line in the plane. Let (x0, ξ0) ∈ WF(f ) such that
x0 ∈ L0 and ξ0 is a normal vector to L0.

The singularity of f at (x0, ξ0) causes a
unique singularity in R f at (φ0, s0).

Singularities of f not tangent to L(φ0, s0) do
not cause singularities in R f at (φ0, s0).

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

“visible”: singularities tangent “invisible”: singularities not tangent
to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

Theorem (Kutyniok, Labate, 2006): “Shearlets can identify the wavefront set at
fine scales.”

More Precisely:

Continuous Shearlet Transform:

L2(R2) 3 f 7→ SHψf (a, s, t) = 〈f , ψa,s,t〉, (a, s, t) ∈ R+ × R× R2.

Resolution of Wavefront Sets (simplified from [Kutyniok & Labate, 2006], [Grohs,

2011])

WF(f )c =
{
(t0, s0) ∈ R2 × [−1, 1] : for (t, s) in neighborhood U of (t0, s0):

|SHψf (a, s, t)| = O(ak) as a −→ 0, ∀k ∈ N, unif. over U
}
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Shearlets can Separate the Visible and Invisible Part

ξ1

ξ2

Wφ

Invisible

Semi-visible

Visible

Visible Wedge
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Our Approach “Learn the Invisible (LtI)”
(Bubba, Kutyniok, Lassas, März, Samek, Siltanen, Srinivan; 2018)

Step 1: Reconstruct the visible

f ∗ := argminf≥0‖Rφ f − g‖2
2 + ‖ SHψ(f )‖1,w

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k, l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )
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Our Approach – Step 2: PhantomNet

U-Net-like CNN architecture NN θ (40 layers) that is trained by minimizing:

min
θ

1

N

N∑
j=1

‖NN θ(SH(f ∗j ))− SH(f gtj )Iinv‖2
w ,2.
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Learning the Invisible

Model Based & Data Driven: Only learn what needs to be learned!

Advantages over Pure Data Based Approach:

Interpretation of what the CNN does ( 3D inpainting)

Reliability by learning only what is not visible in the data

Better performance due to better input

The neural network does not process entire image, leading to...

I ...less blurring by U-net
I ...fewer unwanted artifacts

Better generalization
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Setup

Experimental Scenarios:

Mayo Clinic1: human abdomen scans provided by the Mayo Clinic for the
AAPM Low-Dose CT Grand Challenge.

I 10 patients (2378 slices of size 512× 512 with thickness 3mm)
I 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
I simulated noisy fanbeam measurements for 60◦ missing wedge

Lotus Root: real data measured with the µCT in Helsinki

I generalization test of our method (training is on Mayo data!)
I 30◦ missing wedge

. . .

1We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine
(AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bioengineering for
providing the Low-Dose CT Grand Challenge data set.
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Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76
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Average over Test Patient

Method RE PSNR SSIM HaarPSI
fFBP 0.47 17.16 0.40 0.32
fTV 0.18 25.88 0.85 0.37
f ∗ 0.17 26.34 0.85 0.40

f[Gu & Ye, 2017] 0.25 23.06 0.61 0.34
NN θ(fFBP) 0.15 27.40 0.78 0.52

NN θ(SH(fFBP)) 0.16 26.80 0.74 0.52
fLtI 0.08 32.77 0.93 0.73

HaarPSI (Reisenhofer, Bosse, Kutyniok, and Wiegand; 2018)

Advantages over (MS-)SSIM, FSIM, PSNR, GSM, VIF, etc.:

Achieves higher correlations with human opinion scores.

Can be computed very efficiently and significantly faster.

www.haarpsi.org
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Generalization to Lotus Root

fgt

fFBP: RE = 0.31, HaarPSI=0.61f ∗: RE = 0.11, HaarPSI=0.75f[Gu & Ye, 2017]: RE = 0.25, HaarPSI=0.62fLtI: RE = 0.11, HaarPSI=0.83
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Conclusions
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What to take Home...?

Model-Based Side:

Traditional (differential-equation based) methodologies very well understood.

Methods based on mathematical models today often reach a barrier.

Data-Based Side:

Novel powerful, pure data-based methodologies.

Deep learning is currently entering numerous applications.

A theoretical foundation is still largely missing.

Data Science
Modeling,

Simulation,
OptimizationCombining Both Sides:

Optimal balancing of data-adaptiveness and differential equation-based
modeling!

Limited Angle CT: Learn only the invisible parts with a deep neural network.
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:
www.math.tu-berlin.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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