

Lorentz Boost Networks Autonomous Physics-Inspired Feature Engineering -

Martin Erdmann, Erik Geiser, Yannik Rath, Marcel Rieger

HAP Workshop

19 February 2019

The Large Hadron Collider

- pp collider @ CERN
- 26.7 km, 1600 magnets, 8.3 T
- $\sqrt{s} = 13 \text{ TeV} (2016-2018)$
- 800 mio. events / s

The Compact Muon Solenoid

- Multi-purpose detector
 - → SM, Higgs, SUSY, DM, extra dim.
- 21 × 15 m (l × ∅), 12.500 tons
- 3.8 T solenoid

3 Problem statement: ttH (H \rightarrow bb) vs. tt+bb

• **Classification task**: separate ttH ($H \rightarrow bb$) from tt+bb

- Final state:
 - 6 jets (2 from tops, 2 from W, 2 from Higgs)
 - 1 charged lepton
 - 1 neutrino (missing transverse energy)

8 x four-vector components E, p_x , p_y , p_z → Low-level features

4 Feature engineering in HEP

4 Feature engineering in HEP

4 Feature engineering in HEP

- Observations
 - 1. Physicists' crafted high-level features might not exploit all available information
 - 2. In practice, it is hard for "standard" DNNs to learn representations of complex features

- Similar situation to $FCNs \rightarrow CNNs$:
 - Images contain information in translation invariant adjacency of pixels
 - \rightarrow Exploit information by changing the network structure!

[Zeiler & Fergus 2013], adapted by Yann LeCun

Udacity Course 730, Deep Learning

→ Encode first-principles of domain (*physics*) into network structure

6 Lorentz Boost Networks

Marcel Rieger - 19.2.19

7 Boosting

• Lorentz transformation with boost matrix

$$\Lambda = \begin{bmatrix} \gamma & -\gamma\beta n_x & -\gamma\beta n_y & -\gamma\beta n_z \\ -\gamma\beta n_x & 1 + (\gamma - 1)n_x^2 & (\gamma - 1)n_x n_y & (\gamma - 1)n_x n_z \\ -\gamma\beta n_y & (\gamma - 1)n_y n_x & 1 + (\gamma - 1)n_y^2 & (\gamma - 1)n_y n_z \\ -\gamma\beta n_z & (\gamma - 1)n_z n_x & (\gamma - 1)n_z n_y & 1 + (\gamma - 1)n_z^2 \end{bmatrix}$$

with $\vec{n} = \vec{\beta}/\beta$

- Vectorized formulation to run efficiently on GPUs
 - 4D tensor (batch × particle × 4 × 4)

$$\Lambda = I + (U \oplus \gamma) \odot ((U \oplus 1) \cdot \beta - U) \odot (e \cdot e^{T})$$

with
$$U = \begin{bmatrix} -1^{1\times 1} & 0^{1\times 3} \\ 0^{3\times 1} & -1^{3\times 3} \end{bmatrix} \quad e = \begin{bmatrix} 1^{1\times 1} \\ -\overrightarrow{n}^{3\times 1} \end{bmatrix}$$

8 Feature engineering

- Features per vector:
 - ⊳ E, pt, eta, phi, mass
- Pairwise features:
 - \triangleright cos(ϕ) between vectors
- More features possible, but not necessarily required

- Input feature scaling / normalization not applicable
 - \rightarrow Batch normalization applied after feature layer

Application ttH vs. tt+bb

10 Complication: jet sorting

Option 1

Use generator (truth) information

→ Isolated study of LBN performance

Option 2

Sort jets by transverse momentum p_{T}

→ Challenging "real-life" scenario

• O(100) networks per configuration

• DNN: varied layers, units, activations, FCN/Dense/Residual setup, learning rate, L2 norm.

Marcel Rieger - 19.2.19

Generator (truth) sorting

• O(100) networks per configuration

• DNN: varied layers, units, activations, FCN/Dense/Residual setup, learning rate, L2 norm.

Marcel Rieger - 19.2.19

Generator (truth) sorting

- O(100) networks per configuration
- LBN: only few hyper-parameters, essentially number of combinations M
- DNN: varied layers, units, activations, FCN/Dense/Residual setup, learning rate, L2 norm.

Generator (truth) sorting

p_T sorting

LBN

- 1. DNN behind LBN can be rather shallow
 - $\,\triangleright\,$ Feature representation moved to LBN
 - DNN can focus on transformation to output
- 2. LBN is not a black box
 - ▷ Extract which (combined) particles and features are important

13 Combination coefficients (generator sorting)

14 Feature example: particle mass

ttH

ttbb - 35000 - 30000 25000 20000

LBN Boosted Particle Nr. m

80

14 Feature example: particle mass

Marcel Rieger - 19.2.19

RWITHAACHEN

15 Summary

• "Which additional feature could increase my network performance?" should rather become

"How can I design my network to (even better) work with raw features?"

- ▷ Encode physics knowledge right into network **rather than** into features
- Lorentz Boost Network possible candidate for many use cases
 - ▷ Architecture able to autonomously engineer features
 - ▷ Allows to open the **black box:** LBN finds meaningful relations in physics context
 - ▷ git.rwth-aachen.de/3pia/lbn

Backup

Lorentz Boost Network

18 Classification: ttH ($H \rightarrow bb$) vs. ttbb

- Final state: 6 jets, 1 charged lepton, 1 neutrino (missing transverse energy)
- Variables
 - Low-level: 6 + 2 four-momenta
 - High-level: 26, from published ttH analysis
 - Combined

- How to order jets?
 - a) Using truth information
 - b) Simple sorting by p_T

Network	LBN+NN low-level		DNN						
Observables			low-level		high-level		combined		
Input Ordering	gen.	\mathbf{p}_{T}	gen.	\mathbf{p}_{T}	gen.	$\mathbf{p}_{\mathbf{T}}$	gen.	\mathbf{p}_{T}	
Mpart., restfr.	13	16	-	-	-	-	-	-	
LBN-gate	on	off	-	-	-	-	-	-	
nlayers	8	8	8	8	4	4	8	6	
nnodes	1024	1024	1024	1024	512	512	1024	1024	

21 Engineered features

Marcel Rieger - 19.2.19

Marcel Rieger - 19.2.19

Combined to Particles											
	b_1	b_2	b _{had}	q_1	q_2	b _{lep}	lep	ν	_		
<i>b</i> 1 -	100	-4	-37	-36	-52	-38	-43	-14	<u>ц</u> 1		
b ₂ -	-4	100	-37	-43	-44	-29	-37	-14			
b _{had} -	-37	-37	100	58	51	-24	-22	-19			
q_{1} -	-36	-43	58	100	78	-21	-7	-11	- t _{had}		
q ₂ -	-52	-44	51	78	100	-16	27	11			
b _{lep} -	-38	-29	-24	-21	-16	100	61	12			
lep-	-43	-37	-22	-7	27	61	100	22	- t _{lep}		
v -	-14	-14	-19	-11	11	12	22	100			
	H^1			t _{had}			t_{lep}		-		

Combined to Restframes b_{lep} b_{had} lep b_1 b_2 q_1 q_2 ν 100 -46 -26 -27 -30 -21 -26 b_1 -18 $-H^1$ -20 -39 -40 -52 b_2 100 -7 -36 -46 b_{had} 49 -32 -22 -26 -7 100 49 -28 -27 -27 -20 100 75 -25 -14 t_{had} q_1 49 **q**₂ -30 -36 49 75 100 -15 -8 23 -21 -39 -32 -27 100 91 -15 69 b_{lep} -26 -40 -22 -25 -8 91 100 68 lep t_{lep} -18 -52 -14 23 100 -28 69 68 V H^{1} t_{lep} t_{had}